# The Norfolk County Council (Norwich Northern Distributor Road (A1067 to A47(T))) Order

# 5.6 Norwich Northern Distributor Road Traffic Forecasting Report: Volume 1

Planning Act 2008

Infrastructure Planning

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

| PINS Reference Number: | TR010015     |
|------------------------|--------------|
| Document Reference:    | 5.6          |
| Regulation Number:     | 5(2)(q)      |
| Author:                | Mott MacDona |

| Revision | Date                         | Description             |
|----------|------------------------------|-------------------------|
| 0        | 8 <sup>th</sup> January 2014 | Revision for submission |
|          |                              |                         |

d

| Mott MacDonald | Mott MacDonald |            |             |
|----------------|----------------|------------|-------------|
| Revision       | Originator     | Checked By | Approved By |
| 0              | M Shahkarami   | S Kirk     | C White     |
|                | I Conway       | R Tyler    | G Kelly     |
|                |                | P Bugajski |             |

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

MM filing ref: MM-233906 DP01-Doc-008

# **Table of Contents**

| 1 | Ke   | y Summary8                             |
|---|------|----------------------------------------|
|   | 1.1  | Overview                               |
| 2 | Intr | oduction 10                            |
|   | 2.1  | Background 10                          |
|   | 2.2  | Overview of the forecasts presented 10 |
|   | 2.3  | Purpose and layout of Report11         |
| 3 | Ov   | erall Modelling Framework 13           |
|   | 3.1  | The Modelling Framework 13             |
|   | 3.2  | Model Definition                       |
|   | 3.3  | Demand Modelling 15                    |
|   | 3.4  | Forecasting Scenarios                  |
| 4 | Foi  | recast Year Networks 21                |
|   | 4.1  | Requirements 21                        |
|   | 4.2  | Built Schemes                          |
|   | 4.3  | Do Minimum Network 21                  |
|   | 4.4  | Do Something Network                   |
|   | 4.5  | Change in Travel Costs                 |
| 5 | Fut  | ure Year Traffic Growth 34             |
|   | 5.1  | Requirements                           |
|   | 5.2  | Overview of Process                    |
|   | 5.3  | Developments                           |
|   | 5.4  | Development Trip Generation            |
|   | 5.5  | Development at Broadland Gate 42       |

Application for Development Consent Order

|   | 5.6  | Trip Distribution                                           | 45 |  |  |  |  |
|---|------|-------------------------------------------------------------|----|--|--|--|--|
|   | 5.7  | NTEM 6.2 Growth                                             | 47 |  |  |  |  |
|   | 5.8  | Freight Growth                                              |    |  |  |  |  |
|   | 5.9  | Derivation of 2017 and 2032 Reference Case Trip Matrices    | 51 |  |  |  |  |
|   | 5.10 | Forecast Reference Demand                                   | 52 |  |  |  |  |
|   | 5.11 | Constraint to NTEM 6.2                                      | 55 |  |  |  |  |
| 6 | Va   | riable Demand Traffic Forecasts                             | 57 |  |  |  |  |
|   | 6.1  | Overview                                                    | 57 |  |  |  |  |
|   | 6.2  | Demand Model Realism Testing                                | 57 |  |  |  |  |
|   | 6.3  | Convergence                                                 | 58 |  |  |  |  |
|   | 6.4  | Do-Minimum Demand Forecast                                  | 61 |  |  |  |  |
|   | 6.5  | Do Something Demand Forecasts                               | 64 |  |  |  |  |
| 7 | Ne   | twork Performance                                           | 69 |  |  |  |  |
|   | 7.1  | Traffic Impact                                              | 69 |  |  |  |  |
|   | 7.2  | Traffic Queues                                              | 77 |  |  |  |  |
|   | 7.3  | Effects on People                                           | 80 |  |  |  |  |
|   | 7.4  | 4 City Centre through Traffic 81                            |    |  |  |  |  |
|   | 7.5  | Highway Journey Times                                       | 86 |  |  |  |  |
|   | 7.6  | Journey Times on Public Transport Routes                    | 92 |  |  |  |  |
| 8 | Ab   | Abbreviations                                               |    |  |  |  |  |
| 9 | Ap   | pendices A to G – See Volume 2 of the Forecasting Report 1  | 00 |  |  |  |  |
| 1 | 0 A  | ppendices H to K – See Volume 3 of the Forecasting Report 1 | 01 |  |  |  |  |

## Application for Development Consent Order Document Reference: 5.6

## List of Tables

| Table 3.1: Demand Segments                                                       | 15  |
|----------------------------------------------------------------------------------|-----|
| Table 3.2: DIADEM Parameters                                                     | 18  |
| Table 3.3: Summary of Demand Model Set Up                                        | 19  |
| Table 4.1: Classification of Future Inputs                                       | 22  |
| Table 4.2: Uncertainty Log – Factors Affecting Highway Supply                    | 24  |
| Table 4.3: Uncertainty Log – Factors Affecting Public Transport Study            | 28  |
| Table 4.4: 2012, 2017 and 2032 Highway Generalised Cost Coefficients (2010       |     |
| Prices)                                                                          | 32  |
| Table 4.5: Values of Time and Fare Coefficients for PT Assignment (2010 Prices)  | 33  |
| Table 5.1: Development Land Use Type and TRICS Category                          | 36  |
| Table 5.2: TRICS Residential Trip Rates (Vehicle Trips per Dwelling)             | 39  |
| Table 5.3: TRICS B1 Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)       | 39  |
| Table 5.4: TRICS B2 Rates (Vehicle Trips per 100sqm Gross Floor Area)            | 39  |
| Table 5.5: TRICS B8 Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)       | 40  |
| Table 5.6: TRICS DIY Store Trip Rates (Vehicle Trips per 100sqm Gross Floor Are  | ea) |
| ······                                                                           | 40  |
| Table 5.7: TRICS Non Food Superstore Trip Rates (Vehicle Trips per 100sqm Gro    | SS  |
| Floor Area)                                                                      | 41  |
| Table 5.8: TRICS Fast Food Drive through Trip Rates (*Vehicle Trips per 100sqm)  |     |
| Gross Floor Area)                                                                | 41  |
| Table 5.9: TRICS Private Fitness Club Trip Rates (Vehicle Trips per 100sqm Gross | S   |
| Floor Area)                                                                      | 41  |
| Table 5.10: Broadland Gate Development Quantum                                   | 43  |
| Table 5.11: Average TRICS Business Trip Rates (Vehicle Trips per 100sqm)         | 44  |
| Table 5.12: Average TRICS Residential Trip Rates (Vehicle Trips per Dwelling /   |     |
| 100sqm)                                                                          | 44  |
| Table 5.13: Broadland Gate Generated Trips (Vehicles)                            | 45  |
| Table 5.14: Concentration Parameters (Value relate to trip distance in metres)   | 46  |
| Table 5.15: NTEM6 2 Car Driver Growth Factors                                    | 48  |
| Table 5.16: NTEM6 2 Bus Growth Factors                                           | 49  |
| Table 5.17: NTEM6 2 Rail Growth Factors                                          | 50  |
| Table 5.18: 2013 Road Transport Forecasts – Growth Factors                       | 51  |
| Table 5.19: Highway Reference Demand – Home Based Purposes (trips – 24 hour      | r   |
| PA format)                                                                       | 53  |
| Table 5.20: Highway Reference Demand – Non-Home Based Purposes – AM Pea          | k   |
| Hour Trips – OD Format                                                           | 54  |
| Table 5.21: Highway Reference Demand – Non Home Based Purposes – IP Peak         |     |
| Hour Trips – OD Format                                                           | 54  |

| Table 5.22: Highway Reference Demand – Non-Home Based Purposes – PM Peak          | 55             |
|-----------------------------------------------------------------------------------|----------------|
| Table 6 1: Calibrated Demand Model Parameters 5                                   | 58             |
| Table 6.2. Outturn Flasticities                                                   | 58             |
| Table 6.3: Convergence Parameters                                                 | 30             |
| Table 6.4: Do Minimum 24 Hour PA Highway Demand (Variable Trips Only)             | 32             |
| Table 6.5: Do Minimum Highway Demand – AM Peak Hour Trips – OD Format 6           | 33             |
| Table 6.6: Do Minimum Highway Demand – Average IP Hour Trips – OD Format 6        | 34             |
| Table 6.7: Do Minimum Highway Demand – PM Peak Hour Trips – OD Format 6           | 34             |
| Table 6.8: Do Something Highway Demand – 24 Hour PA (Variable Trips Only) 6       | 35             |
| Table 6.9: Do Something Highway Demand - AM Peak Hour Trips - OD Format 6         | 6              |
| Table 6.10: Do Something Highway Demand – Average IP Hour Trips - OD Format       |                |
|                                                                                   | 6              |
| Table 6.11: Do Something Highway Demand - PM Peak Hour Trips - OD Format 6        | 37             |
| Table 6.12: Do Something Compared with Do Minimum Trip Numbers AM 6               | 37             |
| Table 6.13: Do Something Compared with Do Minimum Trip Numbers Inter-Peak. 6      | 37             |
| Table 6.14: Do Something Compared with Do Minimum Trip Numbers PM 6               | 38             |
| Table 7.1: Modelled Daily Traffic Flows on Routes Between the A1067 and the       |                |
| A47(T)7                                                                           | ′1             |
| Table 7.2: NDR Impact on Suburban Routes and Developer Link Roads7                | '2             |
| Table 7.3: Queue estimated by SATURN (PCU hrs)7                                   | 7              |
| Table 7.4: Number of Dwellings within 50 metres of roads                          | 30             |
| Table 7.5: City Centre through Traffic (AADT)                                     | 32             |
| Table 7.6: Average Journey Times - AM Peak 8                                      | 38             |
| Table 7.7: Average Journey Times - PM Peak 8                                      | 39             |
| Table 7.8: Inbound Public Transport Journey Times and Journey Time Reliability 9  | <del>)</del> 5 |
| Table 7.9: Outbound Public Transport Journey Times and Journey Time Reliability 9 | 96             |

Application for Development Consent Order Document Reference: 5.6

# List of Figures

| Figure 3-1: Hierarchy of Demand Responses                       | 17 |
|-----------------------------------------------------------------|----|
| Figure 7-1: Comparison of Traffic Flows on Inappropriate Routes | 76 |
| Figure 7-2: Overall Queue Comparison - AM peak                  | 78 |
| Figure 7-3: Overall Queue Comparison - PM peak                  | 79 |
| Figure 7-4: Effects on People                                   | 81 |
| Figure 7-5: Through Trips crossing Inner Ring Road Inner Cordon | 83 |
| Figure 7-6: Through Trips crossing Inner Ring Road Outer Cordon | 84 |
| Figure 7-7: Through Trips crossing Outer Ring Road Outer Cordon | 85 |
| Figure 7-8: Route Locations                                     | 87 |
| Figure 7-9: AM Peak Highway Average Journey Times               | 90 |
| Figure 7-10: PM Peak Highway Average Journey Times              | 91 |
| Figure 7-11: Inbound Public Transport Journey Times – AM Peak   | 93 |
| Figure 7-12: Inbound public Transport Journey Times – PM Peak   | 93 |
| Figure 7-13: Outbound Public Transport Journey Times – AM Peak  | 94 |
| Figure 7-14: Outbound Public Transport Journey Times – PM Peak  | 94 |

# 1 Key Summary

## 1.1 Overview

- 1.1.1 This report describes the traffic forecasting work undertaken for the NDR in connection with this Development Consent Order (DCO) application under the Planning Act 2008.
- 1.1.2 The outputs of the forecasting work provide:
  - The future year design traffic flows
  - Traffic flows for operational appraisal of the Scheme Junctions;
  - Traffic impacts across the network and in the city centre;
  - Inputs to the environmental appraisal; and
  - Inputs to the economic appraisal.
- 1.1.3 The forecasting for the Scheme used the updated Norwich Area Transport Strategy (NATS) transport model. Separate transport models were produced for the AM peak hour (08:00-09:00), an average hour in the inter-peak (10:00 – 16:00) and the PM peak hour (17:00 – 18:00). This is to ensure the traffic characteristics for different time periods are modelled accurately. The NDR Local Model Validation Reports (document reference nos. 5.9 and 5.10) describe the updating of the transport models and the calibration and validation processes.
- 1.1.4 This report explains the preparation of the future year transport networks. These include modifications to account for changes, comprising the proposed NDR, complementary traffic management measures, city centre measures, developer link roads and other proposed improvements.
- 1.1.5 The development of the demand matrices is also described. It accounts for the Joint Core Strategy (JCS) spatial allocation of development for which trip generation has been assessed using the TRICS database. The growth has been controlled using the Department for Transport's National Trip End Model (NTEM) and Road Transport Forecast (RTF) databases, but reductions have then been applied for the JCS development trip generation to account for travel plans and the trip distribution for large mixed developments. Variable demand model processes have also been applied to account for behavioural changes of trip redistribution, mode choice and frequency responses to changing travel costs. The forecasting has been undertaken in line with the Department for Transport's Web-based Transport Appraisal Guidance WebTAG (unit 3.15.1).

- 1.1.6 Forecasts are presented for the proposed opening year of 2017 and a design year of 2032 and for scenarios with and without the proposed Scheme.
- 1.1.7 The report describes the changes in traffic and network performance that would occur with the implementation of the proposed transport interventions. It sets out the substantial reductions in traffic on existing orbital routes as a result of the reassignment of strategic traffic to the NDR. There would also be substantial reductions on the proposed developer link roads which would not be appropriate routes for carrying strategic traffic. Traffic levels would be reduced on routes in the Thorpe St Andrew, Old Catton and Hellesdon suburbs, including on the Outer Ring Road. Traffic flows in the city centre would also be reduced substantially as a result of the city centre measures that could be implemented with the introduction of the NDR, though there is some displacement to the Inner Ring Road.
- 1.1.8 Traffic flows travelling through the city would be reduced significantly with the NDR. The analysis shows that through the city centre the forecast traffic in 2032 would be almost half of that in the 2012 base year as a result of city centre measures. Traffic forecasts on the Inner Ring Road would be reduced in 2017 and 2032 to levels only just higher than in the base year. On the Outer Ring Road forecast traffic would reduce to levels below those in the base year.
- 1.1.9 Journey times from the strategic road network to the Airport and the proposed development location at Rackheath would be reduced significantly with the NDR implemented. In addition there are journey time reductions on radial bus routes into the city centre with improvements to journey time reliability.
- 1.1.10 Comparison of the overall queues within the transport model shows that there will be large increases without transport improvements, but these would be significantly reduced by the implementation of the scheme.

# 2 Introduction

# 2.1 Background

- 2.1.1 Mott MacDonald (MM) has been appointed by Norfolk County Council (NCC) to assist with the development and appraisal of the Norwich Northern Distributor Road, known as the NDR or referred to as the Scheme.
- 2.1.2 The Scheme would be a dual carriageway all-purpose strategic distributor road, to be classified as the A1270 Principal Road, which would link the A1067 Fakenham Road near Attlebridge, to the A47(T) Trunk Road at Postwick. This will be over a length of approximately 20.4km.
- 2.1.3 The NDR is a project of national significance which requires a Development Consent Order (DCO) under the Planning Act 2008 and this formal planning process began in early 2013. It is currently anticipated that the process will be completed in time for the NDR scheme to start construction in 2015 and to be opened in 2017.
- 2.1.4 This document is one of a number that support the DCO, each of which has its own unique document number, and should therefore be read in conjunction with the other documentation. The proposed layout of the NDR is shown in the General Arrangement Plans contained in document number 2.6, whilst the full needs case for the NDR is explained in the Statement of Reasons (document 4.1) and the Environmental Statement (document 6.1).
- 2.1.5 To support the process of scheme appraisal, the Norwich Area Transport Strategy (NATS) transport model has been updated to a 2012 base year. The forecasting has been carried out on a Production Attraction (PA) basis, a requirement of current WebTAG guidance, and the National Trip End Model (NTEM) and Road Transport Forecasts (RTF). The forecast networks were developed on the basis of the WebTAG (unit 3.15.5) uncertainty log principles. Local development assumptions were based on the proposals for the Joint Core Strategy (JCS).
- 2.1.6 A plan of the scheme is shown in Figure B.1 in Appendix B of this Forecasting Report and further details are included in Section 4.4.

# 2.2 Overview of the forecasts presented

- 2.2.1 Traffic forecasts accounted for the JCS proposals for residential and employment developments as well as corresponding transport network changes that will provide access to the proposed developments. The forecast scenarios comprise the following:
  - A set of transport network changes;
  - Assumptions about changes in values of time and vehicle operating costs over time;
  - A specific set of development assumptions;
  - Application of National Trip End Model (NTEM) growth factors as a constraint on trip growth for private vehicle use; and
  - Application of growth of freight traffic from the DfT Road Transport Forecasts (RTF).
- 2.2.2 The transport supply and development assumptions were arrived at through a process of identifying potential transport improvements and development proposals, and undertaking an assessment of the likelihood of each of these proposals coming forward in the context of the JCS.
- 2.2.3 The demand forecasting used the DIADEM variable demand modelling software forecasting procedures without and with a scheme intervention ( also called Do-Minimum and Do-Something scenarios). It used a specific set of demand model parameters adjusting the sensitivity of destination, mode and frequency choices to changes in generalised cost. In addition, travel planning and distribution for new developments was taken into account.
- 2.2.4 The following demand forecasts were produced:
  - The Reference Case which was a forecast of what is likely to happen if the travel costs remain the same in the future as in the base year i.e. it takes no account of changes in travel costs that would arise from the increased demand, or changes in fuel costs or the value of time.
  - The Do-Minimum forecast which used variable demand modelling to account for changes in travel costs and the future transport network that excludes the Scheme.
  - The Do-Something network which included all highway changes associated with the NDR Scheme, as well as Norwich city centre measures, and the forecast used variable demand modelling to account for changes in travel costs with this network.

# 2.3 Purpose and layout of Report

- 2.3.1 The report describes the traffic forecasts for the Scheme and sets out the assumptions on which these forecasts have been based.
- 2.3.2 The structure of this report is as follows:
  - Chapter 3 presents an overview of the modelling system developed to assess the NDR;
  - Chapter 4 documents the development of future year highway networks;
  - Chapter 5 presents future year traffic growth forecasts;
  - Chapter 6 provides analysis and discussion in relation to future year forecasts;
  - Chapter 7 provides an analysis of effects of the NDR on traffic; and
  - Chapter 8 contains a glossary of abbreviations.

# **3 Overall Modelling Framework**

## 3.1 The Modelling Framework

- 3.1.1 The NATS transport modelling framework used to assess the NDR consists of three main elements:
  - Highway Traffic Model: this is a SATURN model with 413 zones with an extensive detailed simulation area that goes beyond the main Norwich city urban area. The rest of the network is coded as a SATURN buffer network. The model has been validated to a 2012 base year.
  - Public Transport Model: this is a VISUM public transport model covering bus and rail modes. The model covers the same area as the highway model plus the key rail routes into Norwich and represents the same base year of 2012.
  - Demand Model: this is a DIADEM variable demand model. The model is an incremental model, and is set up in Production-Attraction format as required by WebTAG (unit 3.10.2).
- 3.1.2 The overall modelling framework has been developed to be consistent with the guidance set out in WebTAG (unit 3.1.1). The individual elements have been developed to be consistent with the guidance set out in WebTAG units 3.10, 3.11 and 3.19.
- 3.1.3 Full details of the first two model components are set out in the Highway Local Model Validation Report (document reference 5.9) and the Public Transport Local Model Validation Report (document reference 5.10). The demand model is described in this Forecasting Report.

# 3.2 Model Definition

## Forecast Years

3.2.1 Future year traffic forecasts were developed for two years: 2017 and 2032. The future year of 2017 represents the programmed opening year of the proposed NDR, and 2032 represents the design year (15 years after scheme opening).

## Time Periods

3.2.2 The highway and public transport assignment models have been developed for three time periods:

- AM Peak Hour (0800-0900hrs);
- Average Inter-Peak Hour (1000-1600hrs); and
- PM Peak Hour (1700-1800hrs).
- 3.2.3 An Off-Peak model representing an average hour for the period 1900 to 0700 hrs has also been developed for the purposes of demand modelling, where costs are required for all times of the day (it should be noted that this is not a fully validated model).

#### **Demand Segmentation**

- 3.2.4 The development of the 2012 base model produces highway assignments for five vehicle types/ user classes for each model hour at an O-D level. This representation of the demand is not sufficiently detailed to be used as inputs to the demand model for the following reasons:
  - The demand model is applied to trips with an origin or destination inside the modelled area. Therefore, purely external-external trips need to be treated as fixed in a separate demand segment; and
  - The home-based purposes need be modelled in PA (24 hour) format, not hourly O-D.
- 3.2.5 The highway demand was therefore split into ten demand segments, with five additional segments being included to model trips for PT users who have no access to a car. These fifteen demand segments are shown in Table 3.1. In addition the home-based demand segments are aggregated to a 24 hour level to be used in PA modelling.

Table 3.1: Demand Segments

| User<br>class | Vehicle<br>Type | Description           | Demand Model Segment                           |  |  |  |
|---------------|-----------------|-----------------------|------------------------------------------------|--|--|--|
| 1             | Car/            | Home Based Work       | Variable HBW - Car Available                   |  |  |  |
| 2             | LGV/ PT         |                       | Variable HBW - No Car Available                |  |  |  |
| 3             | Car/ PT         | Home Based Employer's | Variable HBEB - Car Available                  |  |  |  |
| 4             |                 | Business              | Variable HBEB - No Car Available               |  |  |  |
| 5             | Car/            | Home Based Other      | Variable HBO - Car Available                   |  |  |  |
| 6             | LGV/FI          |                       | Variable HBO - No Car Available                |  |  |  |
| 7             |                 |                       | Variable NHBEB - Car Available                 |  |  |  |
| 8             | Car/ PT         | Non-Home Based        | Variable NHBEB - No Car Available              |  |  |  |
| 9             |                 | Employer's Business   | Fixed NHBEB - (External-External<br>Movements) |  |  |  |
| 10            |                 |                       | Variable NHBO - Car Available                  |  |  |  |
| 11            | Car/<br>LGV/ PT | ar/<br>GV/ PT         | Variable NHBO - No Car Available               |  |  |  |
| 12&13         | 200711          |                       | Fixed NHBO & HBW - (External-                  |  |  |  |
|               |                 |                       | External Movements)                            |  |  |  |
| 14            | LGV             | Freight               | Freight (LGV)                                  |  |  |  |
| 15            | HGV             | Freight               | Freight (HGV)                                  |  |  |  |

## 3.3 Demand Modelling

- 3.3.1 The forecasting procedure was undertaken using DIADEM software (version 5.0). DIADEM implements variable demand modelling in line with WebTAG Unit 3.10. DIADEM does not include an assignment module; instead it relies on other software packages to carry out assignments, i.e. SATURN for the highway network and VISUM for the public transport network. The public transport and highway assignment models are external to DIADEM but the software packages exchange trip matrices and cost matrices.
- 3.3.2 DIADEM was set up to model the following demand responses:

- Frequency choice;
- Mode choice; and
- Re-distribution.
- 3.3.3 Frequency choice responses represent trip generation and trip suppression that a scheme might produce. Selection of this response is consistent with WebTAG 3.10.3 (Paragraph 1.4.3).
- 3.3.4 Mode choice represents switching of trips between public transport (PT) and highway modes of travel. This has been set up for car-available PT demand segments only.
- 3.3.5 Re-distribution (or destination choice) is likely to be the main demand response for the scheme. Travellers might change final destination of trips due to travel cost changes resulting from the Scheme.
- 3.3.6 Time period response is most relevant where a scheme imposes significant cost differences between travel during the peak period and travel during the inter-peak and off-peak periods. Substantial cost differences may result in drivers changing their period of travel. An example is a tolling regime that applies only to peak periods. It is perceived that journey time savings as a result of the scheme are likely to have a low influence on time-of-day travel. Therefore, macro time-of-day choice responses have not been modelled, in accordance with WebTAG 3.10.3 (Paragraph 1.4.13),
- 3.3.7 The hierarchy of response is consistent with WebTAG advice which identifies frequency (the least sensitive) at the top of the hierarchy and trip distribution (the most sensitive) at the bottom of the hierarchy. The hierarchy adopted is shown in Figure 3-1.

Application for Development Consent Order Document Reference: 5.6

#### Figure 3-1: Hierarchy of Demand Responses



3.3.8 Demand model parameter values have been calibrated in line with WebTAG, as explained in section 6. The resultant parameter values are shown in Table 3.2. The frequency response is only applied to discretionary trips of which the 'other' trip purpose is mostly comprised.

#### Application for Development Consent Order Document Reference: 5.6

#### Table 3.2: DIADEM Parameters

| Journey<br>Purpose                        | Highway<br>Re-distribution | Public<br>Transport<br>Re-distribution | Mode<br>Choice | Frequency |
|-------------------------------------------|----------------------------|----------------------------------------|----------------|-----------|
| Home Based<br>Work                        | -0.113                     | -0.033                                 | 0.68           | -         |
| Home Based<br>Employer<br>Business        | -0.038                     | -0.036                                 | 0.45           | -         |
| Home Based<br>Other                       | -0.074                     | -0.036                                 | 0.53           | 0.15      |
| Non Home<br>Based<br>Employer<br>Business | -0.069                     | -0.042                                 | 0.73           | -         |
| Non Home<br>Based Other                   | -0.073                     | -0.033                                 | 0.81           | 0.15      |

3.3.9 A summary of the demand model set up is shown in Table 3.3. This was set up to be consistent with WebTAG requirements as set out in Unit 3.10.3 with home-based trips in Production Attraction (PA) format so that outbound and return journeys are made to have consistent destination and mode choice by modelling them as linked trips or tours. Home-Based-Work trips (HBW, also referred to as commuting trips) are doubly constrained while Home-Based-Other (HBO) are singly constrained by origin. In the singly-constrained models the trip ends are fixed for one of the trip ends, with no constraints on the other end. In the doubly-constrained models the total trip ends to and from each zone are fixed. For non-home-based trips it cannot be assumed that there are return trips so these are treated as single direction trips, and in DIADEM these are referred to as Origin Destination (OD) format (which is the same as single direction trips in PA format). Freight demand segments have been modelled as fixed OD-based demand and these are only subject to assignment in the Highway model, and it should be noted that some elements of private vehicle trips are fixed (external-external and development trips).

Application for Development Consent Order

Document Reference: 5.6

| Demand  |          |                                                                      |          | Responses                               |                                                       |                          |                  |                  |                  |                                                                                         |
|---------|----------|----------------------------------------------------------------------|----------|-----------------------------------------|-------------------------------------------------------|--------------------------|------------------|------------------|------------------|-----------------------------------------------------------------------------------------|
| Mode    | Purpose  | Car Availability                                                     | Format   | Time<br>Period                          | Model Format                                          | Time<br>Period<br>Choice | Frequency        | Mode<br>Choice   | Distribution     | Single/ Double constrained                                                              |
|         |          | Na- not applicable<br>CA – car available<br>NCA non car<br>available | PA<br>OD | 24 hour or<br>individual<br>time period | Incremental PA<br>Incremental OD<br>Fixed<br>Excluded | Y – yes<br>N- No         | Y – yes<br>N- No | Y – yes<br>N- No | Y – yes<br>N- No | S - Singly (production<br>or origin)<br>D – Doubly<br>constrained<br>Na- not applicable |
| Private | HBW      | Na                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Ν                | Y                | Y                | D                                                                                       |
|         | HBEB     | Na                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Ν                | Y                | Y                | S                                                                                       |
|         | HBO      | Na                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Y                | Y                | Y                | S                                                                                       |
|         | NHBEB    | Na                                                                   | OD       | TP                                      | Inc OD                                                | Ν                        | Ν                | Y                | Υ                | S                                                                                       |
|         | NHBO     | Na                                                                   | OD       | TP                                      | Inc OD                                                | N                        | Y                | Y                | Υ                | S                                                                                       |
|         | LGV (EB) | Na                                                                   | OD       | TP                                      | Fixed                                                 | Ν                        | Ν                | Ν                | Ν                | Na                                                                                      |
|         | HGV      | Na                                                                   | OD       | TP                                      | Fixed                                                 | Ν                        | Ν                | Ν                | Ν                | Na                                                                                      |
| Public  | HBW      | CA                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Ν                | Υ                | Y                | D                                                                                       |
|         | HBEB     | CA                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Ν                | Y                | Υ                | S                                                                                       |
|         | НВО      | CA                                                                   | PA       | 24 hr                                   | Inc PA                                                | Ν                        | Υ                | Y                | Υ                | S                                                                                       |
|         | NHBEB    | CA                                                                   | OD       | TP                                      | Inc OD                                                | N                        | Ν                | Y                | Υ                | S                                                                                       |
|         | NHBO     | CA                                                                   | OD       | TP                                      | Inc OD                                                | N                        | Υ                | Y                | Υ                | S                                                                                       |
|         | HBW      | NCA                                                                  | PA       | 24 hr                                   | Exc                                                   | N                        | N                | Ν                | Ν                | Na                                                                                      |
|         | HBEB     | NCA                                                                  | PA       | 24 hr                                   | Exc                                                   | N                        | N                | Ν                | Ν                | Na                                                                                      |
|         | HBO      | NCA                                                                  | PA       | 24 hr                                   | Exc                                                   | Ν                        | Ν                | Ν                | N                | Na                                                                                      |
|         | NHBEB    | NCA                                                                  | OD       | TP                                      | Exc                                                   | Ν                        | Ν                | N                | Ν                | Na                                                                                      |
|         | NHBO     | NCA                                                                  | OD       | TP                                      | Exc                                                   | Ν                        | Ν                | N                | Ν                | Na                                                                                      |

#### Table 3.3: Summary of Demand Model Set Up

## 3.4 Forecasting Scenarios

3.4.1 Separate DIADEM runs have been carried out for the Do-Minimum and the Do-Something scenarios, for the two forecast years. The demand modelling assesses the changes in travel costs as a result of traffic growth, so it requires reference travel costs which are taken from the 2012 base model and used as a baseline for measuring changes in travel costs in future years.

# 4 Forecast Year Networks

## 4.1 Requirements

- 4.1.1 For forecasting purposes transport networks representing the supply and cost of transport in future years were required as a basis to assess the impact of the proposed Scheme. Future year transport supply and costs relate to changes in the transport networks, for example new transport infrastructure or public transport services, and the cost of transport e.g. car parking charges or bus fares.
- 4.1.2 Highway and public transport networks for the JCS scenario (current at April 2013) have been produced for the two forecasting years 2017 and 2032.

# 4.2 Built Schemes

4.2.1 There have been no schemes built and opened since the base model development for October / November 2012 (current at April 2013).

# 4.3 Do Minimum Network

Approach

- 4.3.1 Information on planned schemes in Norwich City, South Norfolk and Broadland was provided by NCC. Details on future schemes in the remaining districts of Norfolk are not included as the model detail in those outlying districts is relatively coarse, and therefore including schemes would have minimal effect in the Greater Norwich area.
- 4.3.2 Data collated on future transport proposals was tabulated and an assessment of likelihood of them proceeding was carried out in April 2013. This assessment was in line with the definitions of uncertainty contained in WebTAG unit 3.15.5; these are reproduced in Table 4.1.

#### Table 4.1: Classification of Future Inputs

| Probability of the Input                                   | Status                                                                                                                        |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Near Certain: The outcome                                  | Intent announced by proponent to regulatory agencies.                                                                         |
| will happen or there is a certain probability that it will | Approved development proposals.                                                                                               |
| happen                                                     | Projects under construction.                                                                                                  |
| More than likely: The outcome is likely to happen          | Submission of planning or consent application imminent.                                                                       |
| but there is some<br>uncertainty.                          | Development application within the consent process.                                                                           |
|                                                            | Identified within a development plan.                                                                                         |
| <b>Reasonably foreseeable</b> :<br>The outcome may happen, | Not directly associated with the transport<br>strategy/scheme, but may occur if the strategy/scheme<br>is implemented.        |
| but there is significant<br>uncertainty                    | Development conditional upon the transport strategy/scheme proceeding.                                                        |
|                                                            | Or, a committed policy goal, subject to tests (e.g. of deliverability) whose outcomes are subject to significant uncertainty. |
|                                                            | Conjecture based upon currently available information.                                                                        |
| Hypothetical: There is considerable uncertainty            | Discussed on a conceptual basis.                                                                                              |
| whether the outcome will ever happen.                      | One of a number of possible inputs in an initial consultation process.                                                        |
|                                                            | Or, a policy aspiration.                                                                                                      |

4.3.3 Classifications for each input were assessed in consultation with planning and transport officers at NCC, taking into account guidance, and drawing on local knowledge.

4.3.4 All schemes that are "near certain" or "more than likely" were included in the forecast networks.

## Highway Network

4.3.5 Table 4.2 shows the highway schemes identified in consultation with NCC and the uncertainty level attributed to each scheme. The year shown is the first model year when it is expected that a scheme will be implemented by (so the scheme opening date could be earlier than the model year). All the near certain or more than likely schemes are expected to be implemented by 2017, so the resultant 2017 and 2032 Do Minimum networks are identical. Locations of all the highway schemes in the uncertainty log are shown in Figure A.1 in Appendix A.

Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

#### Table 4.2: Uncertainty Log – Factors Affecting Highway Supply

| SI<br>number | Input                                                                                                                                               | Uncertainty                       | Year | Comment                                                                                | Status                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1            | Dereham Road/ Old Palace Road and<br>Heigham Road junction improvement                                                                              | Near certain (under construction) | 2017 | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor        | Local authority scheme:<br>programmed under<br>construction |
| 2            | A11(T) Fiveways to Thetford<br>improvement scheme                                                                                                   | Near certain (under construction) | 2017 | Dualling of the last section of<br>the trunk road route between<br>the M11 and Norwich | Highways Agency scheme:<br>under construction               |
| 3            | Southbound bus lane Grapes Hill                                                                                                                     | Near Certain                      | 2017 | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor        | Local authority scheme                                      |
| 4            | Two way on Cleveland Road and a new junction arrangement at Cleveland Road/Chaplefield North                                                        | Near Certain                      | 2017 | New Junction arrangements to<br>facilitate Chapelfield North<br>scheme                 | Local Authority scheme:<br>budgeted and Programmed          |
| 5            | Bus only on Theatre Street and<br>Chapelfield North and removal of<br>general traffic except buses, taxis and<br>cyclists from Rampant Horse Street | Near Certain                      | 2017 | Part of city centre measures to reduce through traffic                                 | Local Authority scheme:<br>budgeted and Programmed          |
| 6            | Little Bethel Street closure                                                                                                                        | Near Certain                      | 2017 | Part of Chapelfield North<br>scheme and city centre<br>measures                        | Local authority scheme:<br>budgeted and programmed          |

# Application for Development Consent Order

| 7  | St Stephens Street and Surrey Street bus only                                                   | Near Certain | 2017 | Part of city centre measures                                                                            | Local authority scheme:<br>budgeted and programmed    |
|----|-------------------------------------------------------------------------------------------------|--------------|------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 8  | Traffic signal priority for buses for<br>signals on radial routes outside of Inner<br>Ring Road | Near Certain | 2017 | General Signal timing upgrades across Norwich's road network                                            | Local authority scheme: being built                   |
| 9  | Development Link Broadland Business<br>Park to Plumstead Road                                   | Near Certain | 2017 | Link Road to bypass narrow<br>country road and Thorpe End<br>connecting to Plumstead Road               | Developer scheme:Planning<br>Approval subject to S106 |
| 10 | Salhouse Road - Wroxham Road Link<br>Road                                                       | Near Certain | 2017 | New Road through new<br>housing estate Connecting<br>Wroxham Road to Salhouse<br>Road                   | Developer scheme: approved planning permission        |
| 11 | Tuckswood Roundabout Improvements,<br>Norwich (Harford Place)                                   | Near Certain | 2017 | Improvements to the approach<br>of the roundabout and<br>improved crossing facilities<br>(Barrett Road) | Developer scheme: approved planning permission        |
| 12 | Norwich Research Park Transport<br>Infrastructure                                               | Near Certain | 2017 | Junction Improvement on<br>B1108/Hethersett Lane junction<br>including signalisation                    | Developer scheme: approved<br>planning permission     |
| 13 | Westlegate - removal of straight ahead movement                                                 | Near certain | 2017 | Part of city centre measures to reduce through traffic                                                  | Local authority scheme:<br>budgeted and programmed    |

Application for Development Consent Order

| 14 | Lenwade to Honingham                                                                                  | More than likely       | 2017 | Improvement scheme to widen carriageway for HGV's                                                                             | Local authority scheme:<br>phased programme agreed<br>and construction    |
|----|-------------------------------------------------------------------------------------------------------|------------------------|------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 15 | Bus only on All Saints Green                                                                          | More than likely       | 2017 | Closure of All Saints Green to<br>all general traffic except buses                                                            | Local authority scheme:<br>feasible, but not programmed                   |
| 16 | Longwater Interchange Improvements –<br>To mitigate impact of Lodge Farm 2<br>residential development | More than likely       | 2017 | Free flow slip from A1074<br>westbound onto A47(T)<br>eastbound and part<br>signalisation of the south<br>dumbbell roundabout | Developer scheme: planning application being assessed                     |
| 17 | Westbound bus lane on approach to Larkman Road, Costessey                                             | Reasonably foreseeable |      | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor                                               | Local authority scheme:<br>investigation instigated<br>without conclusion |
| 18 | Westbound bus lane on approach to Norwich Road , Costessey                                            | Reasonably foreseeable |      | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor                                               | Local authority scheme:<br>investigation instigated<br>without conclusion |
| 19 | John Lewis car park right turn in and out                                                             | Reasonably foreseeable |      | Car Park entrance changes allowing all movements                                                                              | Local authority scheme:<br>feasible, but not programmed                   |
| 20 | Thickthorn Roundabout Improvements                                                                    | Reasonably foreseeable |      | Feasibility work currently under way                                                                                          | Highways Agency scheme:<br>feasible, but not programmed                   |

Application for Development Consent Order

| 21 | Eastbound bus lane on Dereham Road<br>bypassing Bowthorpe Roundabout                          | Reasonably foreseeable | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor | Local authority scheme:<br>feasible, but not programmed  |
|----|-----------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|
| 22 | Westbound bus lane on approach to<br>Outer Ring Road/Dereham Road and<br>junction improvement | Reasonably foreseeable | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor | Local authority scheme:<br>feasible, but not programmed  |
| 23 | Longwater Interchange – large scale<br>improvement                                            | Reasonably foreseeable | Feasibility work currently under way                                            | Local authority scheme:<br>feasible, but not programmed  |
| 24 | Improvements to the A47(T) trunk road including junctions and dualling                        | Reasonably foreseeable | Road infrastructure<br>improvements                                             | Highways Agency schemes:<br>feasible, but not programmed |
| 25 | Eastbound bus lane on Dereham Road<br>on approach to Longwater Lane<br>junction, Costessey    | Reasonably foreseeable | Improvements to facilitate bus<br>rapid transit on Dereham Road<br>bus corridor | Local authority scheme:<br>feasible, but not programmed  |

## Public Transport Network

4.3.6 Table 4.3 shows the public transport schemes identified and the uncertainty of the schemes going ahead. Locations of all the public transport schemes in the uncertainty log are shown in Figure A.2 in Appendix A.

| SI<br>number | Input                                                                                                 | Uncertainty                                | Year | Comment                  | Status                                                   |
|--------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|------|--------------------------|----------------------------------------------------------|
| 1            | Extension of Postwick<br>Park and Ride site                                                           | Near certain                               | 2017 | Capacity<br>Improvements | Local authority<br>scheme: has<br>planning<br>permission |
| 2            | Increase in frequency<br>on the number of bus<br>routes to reflect a<br>minimum level of<br>service   | Reasonably<br>Foreseeable/<br>Hypothetical | N/A  | N/A                      | N/A                                                      |
| 3            | Increase frequency of rail services                                                                   | Reasonably<br>foreseeable/<br>Hypothetical | N/A  | N/A                      | N/A                                                      |
| 4            | Norwich Bus Strategy                                                                                  | Hypothetical                               | N/A  | N/A                      | N/A                                                      |
| 5            | New station to serve<br>Rackheath Eco-<br>community or<br>relocation of existing<br>Salhouse Station. | Hypothetical                               | N/A  | N/A                      | N/A                                                      |
| 6            | New rail halt/station at<br>Broadland Business<br>Park/Dussindale Park                                | Hypothetical                               | N/A  | N/A                      | N/A                                                      |
| 7            | New rail halt/station at<br>Postwick Park and<br>Ride                                                 | Hypothetical                               | N/A  | N/A                      | N/A                                                      |
| 8            | New Park and Ride site at Trowse                                                                      | Hypothetical                               | N/A  | N/A                      | N/A                                                      |

4.3.7 With the exception of extension of Postwick Park and Ride site, all the other public transport schemes as identified in Table 4.3 were given a reasonably foreseeable or hypothetical uncertainty level, and therefore based on this qualitative assessment these public transport schemes were not included in

the Do-Minimum scenario. However, it must be noted that a number of schemes identified in the highway uncertainty log are focussed on providing bus priority and have been reviewed for inclusion based on their uncertainty level. All changes to the highway network that would impact on public transport were reflected in the public transport networks.

4.3.8 Rail services remain the same as in the base year as no schemes were identified following consultation that would have a significant impact on level of service.

## 4.4 Do Something Network

- 4.4.1 The Do Something networks consist of a number of elements:
  - The Norwich Northern Distributor Road;
  - Offline improvement measures; and
  - City Centre network improvements.

#### Norwich Northern Distributor Road

- 4.4.2 The preferred route option for the NDR is shown in Figure B.1 in Appendix B. The NDR is proposed to commence in the west at a new junction on the A1067 north of Taverham and connect to the A47(T)to the east of Norwich at the Postwick junction. The total length of the proposed NDR is approximately 20.4km. It is of dual two lane carriageway standard for the entire length, with grade separated junctions at the Postwick Hub Junction with the A47(T) and at the A140 Cromer Road junction and at-grade roundabouts with other major radial routes.
- 4.4.3 Link lengths and planned junction layouts have been taken from the current design drawings. The NDR has been assigned a speed flow curve which corresponds to a D2 dual carriageway rural road.

#### Offline Improvement Measures

- 4.4.4 The following schemes are included as part of the NDR scheme and shown in Figure B.3 in Appendix B:
  - Wroxham Road/ Green Lane junction improvement;
  - North Walsham Road/ Crostwick Lane junction improvement; and
  - Thorpe End: Traffic Management as per Parish Plan (two mini-roundabouts and a pedestrian crossing).

4.4.5 There are a number of locations in Norwich that currently experience rat running. In the northern suburbs it is anticipated that the NDR will reduce or remove these problems. It is felt by some that there may be increases in other locations. To assuage these fears, traffic levels at these locations will be monitored and traffic management measures implemented if required.

## City Centre Network Improvements

- 4.4.6 In conjunction with the NDR, complementary traffic management measures are proposed for Norwich city centre, with the aim of discouraging through car trips and reducing the dominance of traffic in certain areas. The following schemes are included:
  - Golden Ball Street and Farmers Avenue two-way;
  - Removal of general traffic except buses, taxis and cyclists from Red Lion Street;
  - Full closure of Westlegate;
  - Removal of general traffic except buses, taxis and cyclists from Prince of Wales Road (except eastern section);
  - Bus only on Prince of Wales Road and Agricultural Hall Plain; and
  - Removal of some non-bus, taxi or cycle through traffic from Tombland occurs as a consequence of the sum of the other measures.
- 4.4.7 Figure B.2 in Appendix B shows current proposals, and these have been modelled in the Do Something scenario.

## 4.5 Change in Travel Costs

- 4.5.1 Changes of travel costs in the opening and forecast years are to be expected due to increases in incomes and the value of time, changes in fuel costs and improvements in vehicle efficiency. Therefore, the cost assumptions of the validated base year models have been updated in the future year assignments.
- 4.5.2 Cost changes have been calculated for each forecast year and are applicable to both the Do Minimum and Do Something scenarios.

## Highway Generalised Cost Parameters

- 4.5.3 The highway trip costs are made up of time, distance and charge impacts. The Value Of Time (VOT) and Vehicle Operating Cost (VOC) vary by journey purpose and also vary by forecast year to represent changes in fuel costs and income. Changes in fuel costs, vehicle efficiency and values of time included in WebTAG 3.5.6 issued in October 2012 have been used to calculate forecast year values of time and operating costs. Table 4.4 details the highway generalised cost coefficients used for 2012, 2017 and 2032 in pence per minute (PPM) and pence per kilometre (PPK). The values for cars have additionally been adjusted to take account of the proportion of non-freight LGVs which gives slightly different values for each time period.
- 4.5.4 The PPK values are expected to reduce from the 2017 to the 2032 forecasting year due to fuel efficiency improvements for cars and LGVs.

|                      | АМ    |       | Inter Peak |       | РМ    |       |
|----------------------|-------|-------|------------|-------|-------|-------|
|                      | РРМ   | РРК   | PPM        | PPK   | РРМ   | PPK   |
| 2012                 |       |       |            |       |       |       |
| Work                 | 12.39 | 7.51  | 12.29      | 7.51  | 12.10 | 7.51  |
| Employer Business    | 53.83 | 13.74 | 52.61      | 13.74 | 51.85 | 13.74 |
| Other                | 15.84 | 7.51  | 16.47      | 7.51  | 16.92 | 7.51  |
| Light Goods Vehicles | 20.66 | 15.95 | 20.66      | 15.95 | 20.66 | 15.95 |
| Other Goods Vehicles | 35.85 | 45.63 | 35.85      | 45.63 | 35.85 | 45.63 |
| 2017                 |       |       |            |       |       |       |
| Work                 | 13.41 | 7.09  | 13.30      | 7.09  | 13.10 | 7.09  |
| Employer Business    | 59.45 | 13.39 | 58.09      | 13.39 | 57.25 | 13.39 |
| Other                | 17.14 | 7.09  | 17.83      | 7.09  | 18.32 | 7.09  |
| Light Goods Vehicles | 22.78 | 15.52 | 22.78      | 15.52 | 22.78 | 15.52 |
| Other Goods Vehicles | 39.59 | 47.24 | 39.59      | 47.24 | 39.59 | 47.24 |
| 2032                 |       |       |            |       |       |       |
| Work                 | 16.62 | 5.38  | 16.48      | 5.38  | 16.24 | 5.38  |
| Employer Business    | 77.72 | 11.97 | 75.95      | 11.97 | 74.85 | 11.97 |
| Other                | 21.25 | 5.38  | 22.10      | 5.38  | 22.70 | 5.38  |
| Light Goods Vehicles | 29.65 | 14.16 | 29.65      | 14.16 | 29.65 | 14.16 |
| Other Goods Vehicles | 51.76 | 49.99 | 51.76      | 49.99 | 51.76 | 49.99 |

#### Table 4.4: 2012, 2017 and 2032 Highway Generalised Cost Coefficients (2010 Prices)

#### Public Transport Generalised Cost Parameters

4.5.5 As the generalised journey time (GJT) calculation in the public transport model includes fares, appropriate values of time and fare coefficients are required. VISUM operates in units of generalised time, the fare coefficient is the time equivalent (in minutes) of a £1 fare. The future year generalised times were calculated taking into account the assumed real growth in fares (presented in section 4.5.8), and future year Values of Time (extracted from WebTAG Unit 3.5.6, October 2012). Table 4.5 shows the future year Value of Time and resultant fare coefficients used for public transport in the base and forecast years.

#### Table 4.5: Values of Time and Fare Coefficients for PT Assignment (2010 Prices)

| User Class         | Value o | Value of Time (£/hour) |       |       | Fare Coefficients (minutes/£) |      |  |
|--------------------|---------|------------------------|-------|-------|-------------------------------|------|--|
|                    | 2012    | 2017                   | 2032  | 2012  | 2017                          | 2032 |  |
| EB-(work)          | 21.7    | 23.96                  | 31.32 | 2.77  | 2.5                           | 1.92 |  |
| Commute-(non-work) | 6.46    | 6.99                   | 8.67  | 9.29  | 8.58                          | 6.92 |  |
| Other-(non-work)   | 5.71    | 6.18                   | 7.66  | 10.51 | 9.7                           | 7.83 |  |

## Car Parking and Park and Ride Charges

- 4.5.6 Future year parking charges for the main car parks in Norwich have been assumed to increase in real terms in line with the Gross Domestic Product (GDP) growth rates shown in WebTAG 3.5.6, October 2012; this amounts to a compound growth rate of 2% pa to 2032.
- 4.5.7 Similar to the parking charges, Park and Ride charges have been assumed to increase with the GDP growth rates as discussed above.

## Public Transport Fares

- 4.5.8 In consultation with the Norfolk County Council, the public transport fare growth calculation for the forecast year models assumed real terms increase in fares as follows, based on local experience:
  - Bus: 1.8% per annum; and
  - Rail: 1% per annum.

# 5 Future Year Traffic Growth

## 5.1 Requirements

- 5.1.1 For forecasting purposes, future year demand matrices are required by mode and time period reflecting:
  - National traffic growth forecasts; and
  - Proposed developments spatially allocated according to the JCS, but growth constrained to national forecasts.
- 5.1.2 Future year matrices are required for the opening year (2017) and design year (2032). For home based trip purposes, demand matrices are required in 24 hour Production and Attraction (PA) format. For non-home based and freight trip purposes matrices are required for the following time periods:
  - AM Peak hour (08:00 09:00);
  - Average Inter Peak Hour (10:00 16:00);
  - PM Peak hour (17:00 18:00); and
  - Average Off Peak Hour (19.00 7.00).

# 5.2 Overview of Process

- 5.2.1 Two methods have been used to produce future trip levels with the method employed being dependent on geographic location.
- 5.2.2 For the Norwich, Broadland and South Norfolk areas, the trip generation of proposed developments likely to be completed between 2012 and 2032 has been predicted using the TRICS trip rate database. The trip totals for the combined Norwich, Broadland and South Norfolk area have then been controlled to the growth predicted in the NTEM 6.2 dataset for car trips (all purposes) and for LGV trips (commute and other purposes only). These proposed developments were incorporated into all the forecast matrices.
- 5.2.3 In the remaining areas of the model, including Breckland, Great Yarmouth, North Norfolk, King's Lynn and West Norfolk, and other areas of the model where the model detail is coarser, NTEM 6.2 growth factors were applied directly to the base year matrices for car trips (all purposes) and LGV trips (commute and other purposes only), with no account taken explicitly for completed developments as the remoteness from the Scheme means that the exact locations of development are not important for the purpose of the scheme appraisal.

- 5.2.4 Growth factors for employers business trips for Other Goods Vehicles (OGV) and Light Goods Vehicles (LGV) have been calculated using data from the Department for Transport's Road Transport Forecasts for 2013 (RTF13).
- 5.2.5 The reference case matrices developed specifically for the NDR model were identical for the Do-Minimum and Do-Something scenarios, with the same representation of development and the demand for both scenarios controlled to the same growth forecast from NTEM 6.2 and RTF 2013.

## 5.3 Developments

5.3.1 Proposed developments in the model area were assessed by NCC on the basis of the likelihood of completion and a set of most likely developments were input into the modelling process for explicit representation. The full list of developments that were included is contained in Appendices C and E and a graphical representation of these developments is shown in Appendices D and F.

## 5.4 Development Trip Generation

Production of TRICS Trip Rates

5.4.1 The TRICS 2012(b) trip rate database was used to derive average trip generation rates for residential, business and retail development land use types. As there are a large number of proposed developments, using average TRICS rates provides a reasonable estimate of the overall increase in trip generation from the developments. Trip rates were extracted for the following TRICS categories as shown in Table 5.1, below.

| Development Land Use Type | TRICS Category                           |
|---------------------------|------------------------------------------|
| Residential               | 03A Residential - Houses Privately Owned |
| B1 Business               | 02B Employment - Business Park           |
| B2 Business               | 02D Employment - Industrial Estate       |
| B8 Business               | 02F Employment - Warehousing             |

- 5.4.2 For all TRICS categories that were interrogated, only sites with multimodal surveys were selected so that multi-modal splits could be derived. Average trip rates were calculated for the following time periods:
  - AM peak hour (08:00 09:00);
  - Average inter-peak hour (Average hourly flow for 10:00 16:00);
  - PM peak hour (17:00 18:00); and
  - 12 hour total (07:00 19:00).
- 5.4.3 Selections were based on all available data between 01/01/2004 and 18/11/2011 for all locations in the dataset excluding London and Ireland. Trip rates were calculated for weekdays only, for the 12 hour period 07:00 to 19:00. Modal splits were derived for each land use type for the entire period of the surveys and applied to the trip rates for all vehicles for each time period. Key steps in building the matrices are described below.

#### Conversion of TRICS Vehicular Trip Rates to Trip Rates by Model Purpose

5.4.4 The TRICS vehicular trip rates, shown in the tables above, required conversion to the purposes used in the demand and assignment models. In addition, for the home-based production attraction purposes, trip rates were required for a 24 hour period. Use of CTripend data facilitated the production of trip rates in the required formats; CTripend is Department for Transport software.

#### Splitting of Trip Rates by Purpose

5.4.5 CTripend output data, available at zone level, was used to split the calculated vehicular TRICS trip rates into trip rates by purpose. The extracted data contains trip ends by time period, mode and journey purpose. The most appropriate existing zones were selected by land-use type using local knowledge to represent the built development, as follows:
- Residential Zone 8 (Thorpe Mariott);
- Retail Zone 8 (Riverside Retail Park); and
- Business Zone 121 (Sweet Briar Industrial Estate) and Zone 349 (Broadland Business Park).
- 5.4.6 Trip purpose proportions were then calculated for these areas and used to split the trip rates from TRICS into purposes, so that the development trip generation could be added into the user classes of the model.

# Splitting of Trip Rates by Mode

- 5.4.7 Multimodal surveys for each TRICS category were used to produce modal splits between car, public transport, LGV and HGV for each development land-use type.
- 5.4.8 An average was calculated for each land-use using all of the surveys available which had full multi-modal splits for the complete survey day.
- 5.4.9 Further splitting of the public transport trip rates into bus and rail trip rates was achieved using CTripend data for each land use type to find the proportions of trip-ends at zones appropriately matching each land-use type.

# Controlling to NTEM and RTF

5.4.10 The forecasts are controlled to NTEM and RTF. This is explained in section 5.9.

# Adjustment for Travel Planning and Distribution

- 5.4.11 It is considered that the impact of travel planning will have the effect of reducing vehicle trip generation at the proposed developments. To model this effect, an 11% reduction to the vehicle trip generation predicted by TRICS has been made to car trips. This is taken from the Department for Transport's documents 'Making Residential Travel Plans Work' (2007) and Making Personal Travel Planning Work: A practitioners' Guide (2008). This reduction is consistent with the reduction accepted by NCC development control for the Beyond Green development at North Spowston and Old Catton, and it is within the range suggested in WebTAG Unit 3.10.6.
- 5.4.12 For the Rackheath Eco Town and Beyond Green developments a pragmatic approach was adopted to account for the reduced vehicular trip generation that would be likely to occur at these developments when compared with more typical sites found in TRICS. A 30% reduction to the vehicular trip generation was made for these two sites, which represents the 'internalisation'

of the trip generation within each respective site. This is consistent with the assumed reduction that has been accepted by NCC development control for the Beyond Green development at North Spowston and Old Catton.

- 5.4.13 It should be noted that the reductions to development trips to take account of travel planning and for the different nature of the Rackheath Eco Town and of the Beyond Green developments were made after the constraint to NTEM was achieved. Therefore, the growth in reference case highway trips from the base year to the forecast years will be less than that predicted by NTEM.
- 5.4.14 The outturn vehicle trip rates for each time period and land use (see paragraph 5.4.11) are shown below in Table 5.2 to Table 5.9. The car trip rates allow for an 11% reduction to account for travel plans. Full TRICS outputs are attached at Appendix G (these are the trip rates directly from TRICS prior to the adjustment).

| Vahiala | AM Peak     |       | Inter Peak    |       | PM Peak       |       | 12 Hour       |       |
|---------|-------------|-------|---------------|-------|---------------|-------|---------------|-------|
| type    | (8:00-9:00) |       | (10:00-16:00) |       | (17:00-18:00) |       | (07:00-19:00) |       |
|         | IN          | OUT   | IN            | OUT   | IN            | OUT   | IN            | OUT   |
| Car     | 0.127       | 0.327 | 0.158         | 0.149 | 0.307         | 0.184 | 2.055         | 2.117 |
| LGV     | 0.016       | 0.041 | 0.020         | 0.019 | 0.038         | 0.023 | 0.256         | 0.264 |
| HGV     | 0.002       | 0.005 | 0.002         | 0.002 | 0.005         | 0.003 | 0.031         | 0.032 |

#### Table 5.2: TRICS Residential Trip Rates (Vehicle Trips per Dwelling)

# Table 5.3: TRICS B1 Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)

| Vehicle<br>type | AM Peak<br>(8:00-9:00) |       | Inter Peak<br>(10:00-16:00) |       | PM Peak<br>(17:00-18:00) |       | 12 Hour<br>(07:00-19:00) |       |
|-----------------|------------------------|-------|-----------------------------|-------|--------------------------|-------|--------------------------|-------|
|                 | IN                     | OUT   | IN                          | OUT   | IN                       | OUT   | IN                       | OUT   |
| Car             | 1.159                  | 0.218 | 0.245                       | 0.272 | 0.144                    | 0.944 | 4.093                    | 4.047 |
| LGV             | 0.128                  | 0.024 | 0.027                       | 0.030 | 0.016                    | 0.104 | 0.452                    | 0.447 |
| HGV             | 0.026                  | 0.005 | 0.006                       | 0.006 | 0.003                    | 0.021 | 0.093                    | 0.092 |

### Table 5.4: TRICS B2 Rates (Vehicle Trips per 100sqm Gross Floor Area)

| Vehicle<br>type | AM Peak    |       | Inter Peak |       | PM Peak   |       | 12 Hour   |       |
|-----------------|------------|-------|------------|-------|-----------|-------|-----------|-------|
|                 | (8:00-9:00 | 0)    | (10:00-10  | 6:00) | (17:00-18 | :00)  | (07:00-19 | :00)  |
|                 | IN         | OUT   | IN         | OUT   | IN        | OUT   | IN        | OUT   |
| Car             | 0.199      | 0.100 | 0.118      | 0.132 | 0.050     | 0.160 | 1.383     | 1.468 |
| LGV             | 0.106      | 0.053 | 0.063      | 0.07  | 0.027     | 0.086 | 0.739     | 0.784 |
| HGV             | 0.041      | 0.02  | 0.024      | 0.027 | 0.01      | 0.033 | 0.285     | 0.302 |

| Vehicle<br>type | AM Peak<br>(8:00-9:00) |       | Inter Peak<br>(10:00-16:00) |       | PM Peak<br>(17:00-18:00) |       | 12 Hour<br>(07:00-19:00) |       |
|-----------------|------------------------|-------|-----------------------------|-------|--------------------------|-------|--------------------------|-------|
|                 | IN                     | OUT   | IN                          | OUT   | IN                       | OUT   | IN                       | OUT   |
| Car             | 0.045                  | 0.024 | 0.037                       | 0.039 | 0.018                    | 0.045 | 0.409                    | 0.438 |
| LGV             | 0.015                  | 0.008 | 0.013                       | 0.014 | 0.006                    | 0.015 | 0.14                     | 0.15  |
| HGV             | 0.019                  | 0.01  | 0.016                       | 0.017 | 0.008                    | 0.019 | 0.177                    | 0.19  |

### Table 5.5: TRICS B8 Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)

### Table 5.6: TRICS DIY Store Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)

| Vehicle<br>type | AM Peak     |       | Inter Pea     | Inter Peak |               |       | 12 Hour       |        |
|-----------------|-------------|-------|---------------|------------|---------------|-------|---------------|--------|
|                 | (8:00-9:00) |       | (10:00-16:00) |            | (17:00-18:00) |       | (07:00-19:00) |        |
|                 | IN          | OUT   | IN            | OUT        | IN            | OUT   | IN            | OUT    |
| Car             | 0.632       | 0.391 | 1.590         | 1.559      | 1.131         | 1.266 | 15.389        | 14.649 |
| LGV             | 0.091       | 0.056 | 0.229         | 0.225      | 0.163         | 0.183 | 2.221         | 2.114  |
| HGV             | 0.018       | 0.011 | 0.046         | 0.045      | 0.033         | 0.037 | 0.447         | 0.426  |

| Vehicle<br>type | AM Peak     |       | Inter Peak |       | PM Peak       |       | 12 Hour       |        |
|-----------------|-------------|-------|------------|-------|---------------|-------|---------------|--------|
|                 | (8:00-9:00) |       | (10.00-1   | 5.00) | (17.00-10.00) |       | (07.00-19.00) |        |
|                 | IN          | OUT   | IN         | OUT   | IN            | OUT   | IN            | OUT    |
| Car             | 0.296       | 0.152 | 2.040      | 1.970 | 1.299         | 1.379 | 17.344        | 16.703 |
| LGV             | 0.009       | 0.005 | 0.064      | 0.061 | 0.04          | 0.043 | 0.541         | 0.521  |
| HGV             | 0.001       | 0.001 | 0.007      | 0.007 | 0.004         | 0.005 | 0.059         | 0.057  |

#### Table 5.7: TRICS Non Food Superstore Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)

### Table 5.8: TRICS Fast Food Drive through Trip Rates (\*Vehicle Trips per 100sqm Gross Floor Area)

| Vehicle<br>type | AM Peak     |       | Inter Peak    |       | PM Peak       |       | 12 Hour       |        |
|-----------------|-------------|-------|---------------|-------|---------------|-------|---------------|--------|
| <i>.</i>        | (8:00-9:00) |       | (10:00-16:00) |       | (17:00-18:00) |       | (07:00-19:00) |        |
|                 | IN          | OUT   | IN            | OUT   | IN            | OUT   | IN            | OUT    |
| Car             | 2.284       | 1.054 | 6.600         | 6.552 | 6.186         | 6.533 | 67.612        | 64.725 |
| LGV             | 0.276       | 0.127 | 0.797         | 0.791 | 0.747         | 0.789 | 8.164         | 7.816  |
| HGV             | 0           | 0     | 0             | 0     | 0             | 0     | 0             | 0      |

#### Table 5.9: TRICS Private Fitness Club Trip Rates (Vehicle Trips per 100sqm Gross Floor Area)

| Vehicle<br>type | AM Peak<br>(8:00-9:00) |       | Inter Peak<br>(10:00-16:00) |       | PM Peak<br>(17:00-18:00) |       | 12 Hour<br>(07:00-19:00) |       |
|-----------------|------------------------|-------|-----------------------------|-------|--------------------------|-------|--------------------------|-------|
|                 | IN                     | OUT   | IN                          | OUT   | IN                       | OUT   | IN                       | OUT   |
| Car             | 0.452                  | 0.713 | 0.596                       | 0.602 | 1.535                    | 0.832 | 9.082                    | 7.896 |
| LGV             | 0.015                  | 0.023 | 0.019                       | 0.019 | 0.05                     | 0.027 | 0.294                    | 0.256 |
| HGV             | 0.002                  | 0.002 | 0.002                       | 0.002 | 0.005                    | 0.003 | 0.03                     | 0.026 |

# 5.5 Development at Broadland Gate

- 5.5.1 Due to the location and considerable size of the proposed Broadland Gate development, modelling of this development was carried out using a different methodology to that used for the other proposed developments.
- 5.5.2 As with the other developments, average TRICS trip rates have been used to calculate the trip generation, however, special attention has been afforded to this development to ensure that the inbound and outbound generated trips were consistent between the assignment models and those predicted by TRICS. Due to the 24 hour format of the Home Based Work, Home Base Employers Business and Home Based Other user classes, this was completed by preparing bespoke DIADEM time period factors for this development.
- 5.5.3 The peak hour trip generation for the Broadland Gate development was based upon the following development quantum taken from the Broadland Gate Transport Assessment.

| Land Use                  | Development<br>Quantum | TRICS Category                                    |
|---------------------------|------------------------|---------------------------------------------------|
|                           |                        | 02B Employment – Business Park                    |
| B1/ B2/ B8                | 42,000 sqm             | 02D Employment – Industrial Estate                |
|                           |                        | 02F Employment – Warehousing                      |
| Hotel                     | 120 beds               | 06A Hotels Food & Drink – Hotels                  |
| Leisure Club              | 1,890 sqm              | 07K Leisure – Fitness Club (Private)              |
| Residential<br>Apartments | 75 no.                 | 03C Residential – Flats Privately Owned           |
| Medical Facility          | 3,150 sqm              | 05B Health – General Hospital Without Casualty    |
| Ancillary Retail          | 2,400 sqm              | 01G Retail – Other Individual Non-Food Superstore |
| Car Showroom              | 1,208 sqm              | 14A Car Show Rooms – Car Show Rooms               |
| Pub/ Restaurant           | 1,575 sqm              | 06C Hotels Food & Drink – Pub/ Restaurant         |
| Nursery                   | 420 sqm                | 04D Education – Nursery                           |

#### Table 5.10: Broadland Gate Development Quantum

- 5.5.4 In consultation with NCC, it has been assumed that 10% of the development will be completed and occupied by 2017 and that it will be fully completed and occupied by 2032.
- 5.5.5 Average TRICS trip rates have been used for the development with an 11% reduction for travel plans (as described in Paragraph 5.4.11) and are shown in Table 5.11 and Table 5.12. Full TRICS outputs are attached at Appendix G.

#### Table 5.11: Average TRICS Business Trip Rates (Vehicle Trips per 100sqm)

| Land Use | AM Peak<br>(8:00-9:00) |       | Inter Peak<br>(10:00-16:00) |       | PM Peak<br>(17:00-18:00) |       |
|----------|------------------------|-------|-----------------------------|-------|--------------------------|-------|
|          | IN                     | OUT   | IN                          | OUT   | IN                       | OUT   |
| B1       | 1.313                  | 0.247 | 0.278                       | 0.309 | 0.163                    | 1.070 |
| B2       | 0.347                  | 0.173 | 0.206                       | 0.229 | 0.086                    | 0.279 |
| B8       | 0.079                  | 0.042 | 0.066                       | 0.070 | 0.031                    | 0.079 |

#### Table 5.12: Average TRICS Residential Trip Rates (Vehicle Trips per Dwelling / 100sqm)

| Land Use                                                      | AM Peak    |             | Inter Peak |               | PM Peak |       |
|---------------------------------------------------------------|------------|-------------|------------|---------------|---------|-------|
|                                                               | (8:00-9:00 | (8:00-9:00) |            | (10:00-16:00) |         | :00)  |
|                                                               | IN         | OUT         | IN         | OUT           | IN      | OUT   |
| Hotel with integrated<br>conference and leisure<br>facilities | 0.153      | 0.194       | 0.089      | 0.091         | 0.153   | 0.135 |
| Residential                                                   | 0.070      | 0.261       | 0.084      | 0.082         | 0.242   | 0.113 |
| Leisure Club / Swimming<br>Pool                               | 0.468      | 0.737       | 0.617      | 0.622         | 1.588   | 0.861 |
| Medical Facility                                              | 1.061      | 0.339       | 0.633      | 0.683         | 0.150   | 0.470 |
| Ancillary Retail                                              | 0.306      | 0.157       | 2.108      | 2.036         | 1.342   | 1.425 |
| Car Show room                                                 | 0.750      | 0.279       | 0.505      | 0.506         | 0.253   | 0.628 |
| Pub / Restaurant                                              | 0.000      | 0.000       | 1.364      | 1.209         | 2.522   | 1.917 |
| Nursery                                                       | 4.167      | 3.577       | 0.908      | 0.938         | 2.637   | 2.935 |

5.5.6 The trip generation rates shown above were applied to the development quantum for the development shown in Table 5.10 resulting in the trip generation shown in Table 5.13.

| Table 5.13: | Broadland | Gate 0 | Generated | Trips | (Vehicles) |
|-------------|-----------|--------|-----------|-------|------------|

|       | AM Peak     |     | Inter Peak  |     | PM Peak       |     |  |
|-------|-------------|-----|-------------|-----|---------------|-----|--|
|       | (8:00-9:00) |     | (10:00-16:0 | 00) | (17:00-18:00) |     |  |
|       | IN OUT      |     | IN          | OUT | IN            | OUT |  |
| Trips | 644         | 191 | 246         | 256 | 224           | 583 |  |

# 5.6 Trip Distribution

- 5.6.1 The gravity model developed during the construction of the base year model was used to distribute development generated trips. The gravity model was given the following inputs:
  - Origin/Production or Destination/Attraction development generated trips by purpose for each zone;
  - Row or Column totals from base matrix including development;
  - Concentration parameter for appropriate purpose; and
  - Trip lengths by mode.
- 5.6.2 Trip length skims from the base year model were used. Analysis has been carried out using skims from the forecast models to confirm that the forecast trip lengths are broadly consistent with the base year trip lengths.

### **Concentration Parameters**

- 5.6.3 In the context of trip distribution modelling, concentration defines how spread out (or concentrated) the two ends of a trip are, with a strongly negative concentration parameter indicating a relatively concentrated distance between the two trip ends and therefore trip length and a weakly negative or positive concentration parameter indicating trip ends that relatively spread out with a longer trip length. The concentration parameters were taken from the calibrated trip distribution models. For the home based other and non-home based other purposes the concentration parameters were split into several sub-purposes, namely education, personal business, recreational, shopping and visiting friends.
- 5.6.4 Weighted average concentration parameters for home based other and nonhome based other purposes were calculated using trip-ends split by the named sub-purposes from CTripend as the weightings. A summary of the concentration parameters used in the gravity model is shown in Table 5.14.

Norwich Northern Distributor Road Application for Development Consent Order

# Document Reference: 5.6

#### Table 5.14: Concentration Parameters (Value relate to trip distance in metres)

| Mode    | Home<br>Based<br>Work | Home<br>Based<br>Employers<br>Business | Home<br>Based<br>Other | Non-Home<br>Based<br>Employers<br>Business | Non-Home<br>Based Other | LGV      | HGV      |
|---------|-----------------------|----------------------------------------|------------------------|--------------------------------------------|-------------------------|----------|----------|
| Highway | -0.00012              | -0.00005                               | -0.00032               | -0.00005                                   | -0.00022                | -0.00004 | -0.00003 |
| Bus     | -0.00085              | -0.00071                               | -0.00094               | -0.00068                                   | -0.00079                | N/A      | N/A      |
| Rail    | -0.000814             | -0.00068                               | -0.00091               | -0.00062                                   | 0.00001                 | N/A      | N/A      |

5.6.5 The concentration parameters shown above in Table 5.14 show that distributed car trips are likely to be more spread out than distributed trips by rail and bus, with LGV and HGV trips being even more spread out.

# 5.7 NTEM 6.2 Growth

- 5.7.1 NTEM 6.2 growth factors were extracted using TEMPRO by mode, purpose and time period and then applied to existing traffic patterns in order to calculate the overall NTEM 6.2 growth constraints.
- 5.7.2 Growth factors have been extracted using TEMPRO software for all NTEM zones in the study area. Growth factors for key TEMPRO / NTEM zones for home based trips are presented in Table 5.15 to Table 5.17.

Document Reference: 5.6

| Region          |         | 2012-2017 |       |       |        |          |       |         | 2012-2032 |       |       |       |  |  |  |
|-----------------|---------|-----------|-------|-------|--------|----------|-------|---------|-----------|-------|-------|-------|--|--|--|
|                 | HB Work |           | HB EB |       | HB Oth | HB Other |       | HB Work |           | HB EB |       | r     |  |  |  |
|                 | P       | Α         | Р     | Α     | Р      | Α        | Р     | Α       | Р         | Α     | Р     | Α     |  |  |  |
| East of England | 1.046   | 1.054     | 1.050 | 1.060 | 1.065  | 1.074    | 1.105 | 1.135   | 1.114     | 1.150 | 1.247 | 1.279 |  |  |  |
| Norfolk         | 1.049   | 1.051     | 1.052 | 1.055 | 1.074  | 1.077    | 1.135 | 1.141   | 1.146     | 1.148 | 1.291 | 1.310 |  |  |  |
| Broadland       | 1.047   | 1.056     | 1.051 | 1.062 | 1.069  | 1.091    | 1.169 | 1.137   | 1.184     | 1.151 | 1.321 | 1.362 |  |  |  |
| Norwich         | 1.083   | 1.064     | 1.092 | 1.061 | 1.087  | 1.063    | 1.208 | 1.163   | 1.220     | 1.149 | 1.298 | 1.222 |  |  |  |
| South Norfolk   | 1.049   | 1.055     | 1.051 | 1.058 | 1.070  | 1.086    | 1.167 | 1.169   | 1.175     | 1.175 | 1.317 | 1.368 |  |  |  |

### Table 5.15: NTEM6 2 Car Driver Growth Factors

Document Reference: 5.6

| Region          | 2012-2017 |       |       |       |          |       | 2012-2032 |       |       |       |          |       |  |
|-----------------|-----------|-------|-------|-------|----------|-------|-----------|-------|-------|-------|----------|-------|--|
|                 | HB Work   |       | HB EB |       | HB Other |       | HB Work   |       | HB EB |       | HB Other | r     |  |
|                 | P         | A     | Р     | A     | P        | A     | Р         | Α     | P     | A     | Р        | A     |  |
| East of England | 0.998     | 1.007 | 1.024 | 1.031 | 1.022    | 1.031 | 1.002     | 1.032 | 1.093 | 1.117 | 1.172    | 1.213 |  |
| Norfolk         | 0.998     | 1.002 | 1.028 | 1.030 | 1.022    | 1.028 | 1.016     | 1.031 | 1.121 | 1.130 | 1.179    | 1.199 |  |
| Broadland       | 1.011     | 1.002 | 1.038 | 1.038 | 1.032    | 1.034 | 1.066     | 1.018 | 1.177 | 1.132 | 1.251    | 1.250 |  |
| Norwich         | 0.990     | 1.010 | 1.018 | 1.037 | 1.006    | 1.030 | 1.027     | 1.044 | 1.101 | 1.134 | 1.131    | 1.159 |  |
| South Norfolk   | 1.017     | 1.001 | 1.040 | 1.000 | 1.036    | 1.031 | 1.081     | 1.048 | 1.187 | 1.125 | 1.254    | 1.264 |  |

### Table 5.16: NTEM6 2 Bus Growth Factors

Document Reference: 5.6

| Region          | 2012-2017 |       |       |       |        |          | 2012-2032 |         |       |       |       |       |  |
|-----------------|-----------|-------|-------|-------|--------|----------|-----------|---------|-------|-------|-------|-------|--|
|                 | HB Work   |       | HB EB |       | HB Oth | HB Other |           | HB Work |       | HB EB |       |       |  |
|                 | Р         | Α     | Р     | Α     | Р      | Α        | Р         | A       | Р     | A     | P     | Α     |  |
| East of England | 1.015     | 1.026 | 1.038 | 1.043 | 1.028  | 1.042    | 1.019     | 1.057   | 1.089 | 1.112 | 1.189 | 1.229 |  |
| Norfolk         | 1.022     | 1.028 | 1.041 | 1.043 | 1.032  | 1.042    | 1.063     | 1.076   | 1.116 | 1.119 | 1.216 | 1.247 |  |
| Broadland       | 1.028     | 1.026 | 1.041 | 1.054 | 1.043  | 1.053    | 1.108     | 1.063   | 1.159 | 1.135 | 1.292 | 1.302 |  |
| Norwich         | 1.028     | 1.035 | 1.057 | 1.050 | 1.008  | 1.037    | 1.092     | 1.089   | 1.153 | 1.121 | 1.139 | 1.196 |  |
| South Norfolk   | 1.032     | 1.028 | 1.043 | 1.034 | 1.046  | 1.053    | 1.114     | 1.098   | 1.157 | 1.138 | 1.291 | 1.311 |  |

### Table 5.17: NTEM6 2 Rail Growth Factors

# 5.8 Freight Growth

5.8.1 Freight growth factors have been extracted from RTF 2013 as shown in Table 5.18. The values for the East of England were used. As the NATS model has a single OGV matrix, a weighted average of rigid and articulated HGV growth rates were applied based on the RTF 2013 proportional split

| Vehicle type   | East of England |           |  |  |  |  |  |
|----------------|-----------------|-----------|--|--|--|--|--|
|                | 2012-2017       | 2012-2032 |  |  |  |  |  |
| LGV            | 1.096           | 1.545     |  |  |  |  |  |
| OGV - Rigid    | 0.989           | 1.075     |  |  |  |  |  |
| OGV - Artic    | 1.057           | 1.343     |  |  |  |  |  |
| OGV (combined) | 1.018           | 1.190     |  |  |  |  |  |

| T.L. 5 40.004   |                 |               |                |
|-----------------|-----------------|---------------|----------------|
| Table 5.18: 201 | 3 Road Transpor | t Forecasts – | Growth Factors |

# 5.9 Derivation of 2017 and 2032 Reference Case Trip Matrices

- 5.9.1 The methodology is explained in the sections below. This same methodology is used for all modes, journey purposes, time periods, and is applied to both matrix formats i.e. Production and Attraction matrices; and Origin and Destination matrices.
- Step 1 Apply national forecast growth and determine NTEM zone constraints
- 5.9.2 NTEM 6.2 growth factors were applied to the 2012 base year matrices using a doubly constrained Furness. The Furness takes as input a set of column and row growth factors calculated for each zone in the model. It uses an iterative technique to produce a forecast matrix with each zone displaying a close match between the input tripend growth factor and the implied output tripend growth for both rows and columns. When using this process to growth matrices based on trip end growth factors, it is normal for there to be a very small imbalance between the output growth in the rows and the output growth in the columns when compared to the input growth factors after a number of loops of the furness. It is therefore necessary to adjust the matrix afterwards to match the overall growth factors for the rows, the growth factors for the columns or to for an average of the two. The matrices have been controlled to the average of the rows and the columns.

- 5.9.3 For LGV and HGV user classes, regional growth factors were calculated using observed and forecast journey distances presented in the Department for Transport's Road Transport Forecast 2013 data. The calculated factors were applied to all trips using a simple matrix factor.
- 5.9.4 The calculated forecast matrices were then converted to NTEM zone level matrices to obtain their trip end totals so that these can be used as constraints in subsequent steps.
- Step 2 Calculate Trip-ends for Development Zones
- 5.9.5 For zones with development, development trips were calculated by applying the relevant trip rates to the identified quantum of development.
- Step 3: Calculate Trip Distribution for Development Zones
- 5.9.6 For each development zone, trip distribution by trip purpose was calculated by applying the gravity models developed during the development of the base year model. NTEM growth was not applied to the development generated trips.
- Step 4: Create Prior Matrices
- 5.9.7 The outputs from Step 3 (development matrices) were combined with the 2012 base year matrices to create overall prior matrices. Matrix totals at NTEM zone level were also calculated.
- Step 5: Create Constrained Reference Demand Matrices
- 5.9.8 Trip end totals at NTEM zone level for the prior matrices (Step 4) and NTEM growth only matrices (Step 1) were compared and adjustment factors were calculated. The adjustment factors were applied to the prior matrices but were calculated so as to adjust only the factored base year traffic patterns (Step 1) and not the development trip generation (from Step 3). This results in the production of the final reference case matrices constrained to NTEM.
- 5.9.9 The above process is applicable to the 2017 and 2032 matrices. Therefore, the 2017 and 2032 matrices contain development trips, but also with the inclusion of a constraint to NTEM 6.2 at NTEM zone level.

# 5.10 Forecast Reference Demand

5.10.1 The forecast reference demand developed using the above process is presented below.

- 5.10.2 Future year Reference Case estimates of Home Based (HB) highway trips in 24 hour Production and Attraction (PA) format are presented in Table 5.19. The 24 hour PA trip numbers represent a summation of fixed and variable trips. The growth for HB other trips is higher than for HB work and employers business trips.
- 5.10.3 Table 5.20 to Table 5.22 present future year Reference Case non-home based trips in Origin to Destination (OD) format, segmented by assignment user class, for the respective AM, IP and PM modelled time periods.
- 5.10.4 The growth in non-home based trips from base year to the future year of 2017 is estimated to be around 6% to 7%, while 2032 is forecast to be around 16% to 23%.
- 5.10.5 In terms of freight, OGVs are forecast to grow at 2% up to 2017, and 19% up to 2032. LGV trips are forecast to increase by 10% from base year to 2017 and by 55% from base year to 2032.

|             |              | 20      | 017 24 Hou | ır                     | 2032 24 Hour |        |                     |  |
|-------------|--------------|---------|------------|------------------------|--------------|--------|---------------------|--|
| Purpose     | Base<br>Year | Ref     | Diff       | Growth<br>from<br>Base | Ref          | Diff   | Growth from<br>Base |  |
| HB WORK     | 64,297       | 67,980  | 3,682      | 6%                     | 75,010       | 10,713 | 17%                 |  |
| HB EB       | 11,666       | 12,370  | 435        | 6%                     | 13,667       | 2,001  | 17%                 |  |
| HB<br>OTHER | 132,768      | 142,857 | 34,920     | 8%                     | 173,413      | 40,645 | 31%                 |  |

#### Table 5.19: Highway Reference Demand – Home Based Purposes (trips – 24 hour PA format)

| Table 5.20: Highway | Reference Demand - | - Non-Home | Based Purposes - | - AM Peak Hour | Trips – OD |
|---------------------|--------------------|------------|------------------|----------------|------------|
| Format              |                    |            |                  |                |            |

|         |              | 2017 AM Peak Hour |       |                        | 2032 AM Peak Hour |       |                  |  |
|---------|--------------|-------------------|-------|------------------------|-------------------|-------|------------------|--|
| Purpose | Base<br>Year | Ref               | Diff  | Growth<br>from<br>Base | Ref               | Diff  | Growth from Base |  |
| NHBEB   | 1,320        | 1,396             | 76    | 6%                     | 1,528             | 208   | 16%              |  |
| NHBO    | 2,671        | 2,826             | 156   | 6%                     | 3,092             | 422   | 16%              |  |
| LGV     | 6,533        | 7,161             | 628   | 10%                    | 10,097            | 3,564 | 55%              |  |
| OGV     | 12,104       | 12,326            | 223   | 2%                     | 14,406            | 2,302 | 19%              |  |
| Total   | 22,627       | 23,710            | 1,083 | 5%                     | 29,123            | 6,496 | 29%              |  |

Table 5.21: Highway Reference Demand – Non Home Based Purposes – IP Peak Hour Trips – OD Format

|         |              | 2017 IP Peak Hour |       |                        | 2032 IP Peak Hour |       |                  |  |
|---------|--------------|-------------------|-------|------------------------|-------------------|-------|------------------|--|
| Purpose | Base<br>Year | Ref               | Diff  | Growth<br>from<br>Base | Ref               | Diff  | Growth from Base |  |
| NHBEB   | 2,670        | 2,826             | 156   | 6%                     | 3,092             | 422   | 16%              |  |
| NHBO    | 5,786        | 6,173             | 387   | 7%                     | 7,079             | 1,294 | 22%              |  |
| LGV     | 4,970        | 5,447             | 478   | 10%                    | 7,681             | 2,711 | 55%              |  |
| OGV     | 12,108       | 12,331            | 223   | 2%                     | 14,411            | 2,303 | 19%              |  |
| Total   | 25,534       | 26,778            | 1,243 | 5%                     | 32,264            | 6,729 | 26%              |  |

|         |              | 2017 PM Peak Hour |       |                        | 2032 PM Peak Hour |       |                  |  |  |
|---------|--------------|-------------------|-------|------------------------|-------------------|-------|------------------|--|--|
| Purpose | Base<br>Year | Ref               | Diff  | Growth<br>from<br>Base | Ref               | Diff  | Growth from Base |  |  |
| NHBEB   | 2,858        | 3,024             | 165   | 6%                     | 3,310             | 452   | 16%              |  |  |
| NHBO    | 7,629        | 8,143             | 514   | 7%                     | 9,364             | 1,735 | 23%              |  |  |
| LGV     | 5,301        | 5,811             | 509   | 10%                    | 8,193             | 2,892 | 55%              |  |  |
| OGV     | 6,026        | 6,137             | 111   | 2%                     | 7,172             | 1,146 | 19%              |  |  |
| Total   | 21,815       | 23,115            | 1,300 | 6%                     | 28,040            | 6,225 | 29%              |  |  |

Table 5.22: Highway Reference Demand – Non-Home Based Purposes – PM Peak Hour Trips – OD Format

# 5.11 Constraint to NTEM 6.2

- 5.11.1 In accordance with Department for Transport guidance set out in WebTAG 3.15.1 demand matrices have been constrained to NTEM 6.2 at NTEM sector level. The use of NTEM allows consistency between different parts of the country when justifying transport proposals. However the reference trip totals have been adjusted due to the assumptions used on travel planning and for the internalisation of trips at the Rackheath Eco Town and Beyond Green sites.
- 5.11.2 Appendix H provides a summary of demand by geographical sectors for home based purposes. This includes 2012 base demand then future year demand levels which are shown for the application of only NTEM growth, the development trips and then the combined demand in which the NTEM growth is adjusted to make allowance for the development trips. This is shown for the two forecast years 2017 and 2032. For a number of the sectors the forecast growth is taken directly from NTEM but for the more local zones, especially Broadland, Norwich and South Norfolk, there is a contribution derived from development that has been built and spatially allocated.
- 5.11.3 Taking the Table H.1 in Appendix H as an example it shows that Broadland, Norwich and South Norfolk TEMPRO sector 2012 base year productions of 52,046 grow to 55,192 with the application of NTEM growth to 2017, and to 61,554 by 2032. Development productions are estimated at 5,910, and 22,396 in the two forecast years and these have been added, but then the

total growth is controlled to NTEM as shown in the combined column. The figures in the reference column match exactly the NTEM growth thus showing that the constraint has been correctly applied.

# 6 Variable Demand Traffic Forecasts

# 6.1 Overview

- 6.1.1 The modelling framework has been used to determine variable demand forecasts for the Do Minimum and Do Something scenarios, defined as follows:
  - Do-Minimum without the proposed transport intervention; and
  - Do-Something with the proposed transport intervention and associated improvements as well as city centre transport management measures.
- 6.1.2 The demand model parameters were adjusted in accordance with WebTAG guidance to make sure that realistic elasticity of demand to cost change is produced by the model. The demand model was run to convergence and the convergence statistics checked against WebTAG targets to make sure that a stable model at equilibrium has been produced. The effects of the demand modelling on the reference forecasts have been assessed. The following sections describe the analyses undertaken.

# 6.2 Demand Model Realism Testing

- 6.2.1 Realism testing was undertaken on the base-year demand model in accordance with WebTAG 3.10.4.
- 6.2.2 Two new sets of variants of the generalised cost coefficient files have been created. These contain the generalised cost with a rise in fuel prices.

# Fuel Cost Elasticity

- 6.2.3 The demand model was run with a 10% fuel cost increases. This increase was reflected in the model by revised assignment generalised costs in the SATURN networks.
- 6.2.4 The fuel-cost elasticity tests began with WebTAG median parameters and two further tests were run until the final parameters were reached. The final calibrated demand model parameters and outturn elasticities are shown in Table 6.1 and Table 6.2 respectively. The parameters used are within the range suggested in WebTAG 3.10.4 and are thus considered to provide reasonable variable demand response to changes in travel costs.

# Norwich Northern Distributor Road Application for Development Consent Order

### Document Reference: 5.6

| Purpose and Mode |         | NDR Model |         |       |
|------------------|---------|-----------|---------|-------|
| Car              | Minimum | Median    | Maximum |       |
| HBW              | 0.054   | 0.065     | 0.113   | 0.113 |
| HBEB             | 0.038   | 0.067     | 0.106   | 0.038 |
| НВО              | 0.074   | 0.090     | 0.160   | 0.074 |
| NHBEB            | 0.069   | 0.081     | 0.107   | 0.069 |
| NHBO             | 0.073   | 0.077     | 0.105   | 0.073 |

#### Table 6.1: Calibrated Demand Model Parameters

#### Table 6.2: Outturn Elasticities

| Purpose | NDR Elasticity | WebTAG Targets |
|---------|----------------|----------------|
| Work    | -0.18          | -0.30          |
| EB      | -0.15          | -0.10          |
| Other   | -0.53          | -0.40          |
| Total   | -0.39          | -0.30          |

# 6.3 Convergence

- 6.3.1 One requirement for robust forecasting is that iterative demand and assignment models are well converged. The demand and assignment model convergence statistics are shown in Table 6.3.
- 6.3.2 The demand model convergence 'gap' statistics are between 0.06% and 0.10% for the forecast model scenarios which are below the WebTAG target of 0.2% (values lower than this target means that the model is better converged). This shows that the demand model has converged acceptably well.
- 6.3.3 Similarly, for all time period models, forecasting years and scenarios, the assignment model convergence 'gap' is below the recommended WebTAG value of 0.1% by a substantial margin, generally about ten times less that the target (values lower than this target means that the model is better converged). The measurements of flow and cost changes also exceed the

98% target in all cases (in these cases values higher than the target show that the model is better converged).

6.3.4 The 'gap' measures the proximity to an equilibrium solution for the iterative assignment process and the flow and cost changes measure the stability of the solution from one iteration to another. The above shows that the demand model and the assignment model compare very well with the WebTAG targets and it is considered that all of the model runs are well converged

Document Reference: 5.6

|                              |                                           | 2                                             | 2017                                             |                                                  | 2032                                      |                                              |                                                  |                                                  |
|------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Time Period                  | Demand<br>model Gap<br>(Target =<br>0.2%) | Assignment<br>model Gap<br>(Target =<br>0.1%) | Assignment<br>model %<br>Flows (Target<br>= 98%) | Assignment<br>model %<br>Costs (Target<br>= 98%) | Demand<br>model Gap<br>(Target =<br>0.2%) | Assignment<br>model Gap<br>(Target=<br>0.1%) | Assignment<br>model %<br>Flows (Target<br>= 98%) | Assignment<br>model %<br>Costs (Target<br>= 98%) |
| Do-Minimum -<br>Scenario A   | 0.06                                      | N/A                                           |                                                  |                                                  | 0.10                                      | N/A                                          |                                                  |                                                  |
| AM                           | -                                         | 0.036                                         | 99.7                                             | 99.5                                             | -                                         | 0.0018                                       | 99.6                                             | 99.6                                             |
| IP                           | -                                         | 0.0014                                        | 99.8                                             | 99.8                                             | -                                         | 0.0014                                       | 99.8                                             | 99.7                                             |
| PM                           | -                                         | 0.0043                                        | 99.4                                             | 99.6                                             | -                                         | 0.0030                                       | 99.3                                             | 99.5                                             |
| OP                           | -                                         | 0                                             | 100                                              | 100                                              | -                                         | 0                                            | 99.6                                             | 100                                              |
| Do-Something -<br>Scenario C | 0.10                                      | N/A                                           |                                                  |                                                  | 0.08                                      | N/A                                          |                                                  |                                                  |
| AM                           | -                                         | 0.0037                                        | 98.4                                             | 99.2                                             | -                                         | 0.0033                                       | 99.8                                             | 99.8                                             |
| IP                           | -                                         | 0.00070                                       | 99.7                                             | 99.9                                             | -                                         | 0.0010                                       | 99.8                                             | 99.8                                             |
| PM                           | -                                         | 0.0041                                        | 99.6                                             | 99.5                                             | -                                         | 0.0040                                       | 99.6                                             | 99.4                                             |
| OP                           | -                                         | 0                                             | 100                                              | 100                                              | -                                         | 0                                            | 99.6                                             | 100                                              |

#### Table 6.3: Convergence Parameters

# 6.4 Do-Minimum Demand Forecast

- 6.4.1 The Do-Minimum forecasts of highway demand for home based purposes compared with the reference case are presented in Table 6.4, for the 24 hour PA variable trips. It must be noted that the analysis in Table 6.4 only considers the change in variable HB trips, and does not include the fixed trip element. Therefore a direct comparison cannot be made to Table 5.19, which presents a summation of both fixed and variable trips.
- 6.4.2 The 24 hour PA comparison (variable trips only) shows that there are very small changes in the home-based highway trip numbers between the Reference Case and the Do Minimum scenario for all forecasting years.

Document Reference: 5.6

|         |                   | 201           | 7                  |             | 2032              |               |                    |             |
|---------|-------------------|---------------|--------------------|-------------|-------------------|---------------|--------------------|-------------|
| Purpose | Reference<br>Case | Do<br>Minimum | Absolute<br>Change | %<br>Change | Reference<br>Case | Do<br>Minimum | Absolute<br>Change | %<br>Change |
| HBW     | 66,863            | 66,880        | 17                 | 0.0%        | 68,373            | 68,458        | 85                 | 0.1%        |
| HBEB    | 12,229            | 12,233        | 4                  | 0.0%        | 12,856            | 12,869        | 13                 | 0.1%        |
| НВО     | 141,323           | 141,778       | 455                | 0.3%        | 165,782           | 168,338       | 2556               | 1.5%        |

# Table 6.4: Do Minimum 24 Hour PA Highway Demand (Variable Trips Only)

- 6.4.3 The demand model uses a fifteen demand segment setup, disaggregating home based and non-home based trips and also trips that are subject to variable demand modelling changes and those that are not. In order to make the modelling process more efficient, these demand segments are converted into seven user classes for assignment purposes. The private vehicle user class demand from the assignment set up compared with the reference case is reported in Table 6.5 to Table 6.7 for the Do Minimum and Table 6.9 to Table 6.11 for the Do Something.
- 6.4.4 Table 6.5 to Table 6.7 show a comparison between reference case and Do Minimum future year demand trips (both fixed and variable demand in OD format), for the respective AM, IP and PM peak hours. From the comparison of these it is evident that there are minimal changes in the trip numbers in the AM, inter and PM peaks as a results of the application of variable demand.

|         | 2      | 017 AM Pe | eak Hour | •      | 2032 AM Peak Hour |        |      |        |
|---------|--------|-----------|----------|--------|-------------------|--------|------|--------|
| Purpose | Ref    | DM        | Diff     | % Diff | Ref               | DM     | Diff | % Diff |
| Work    | 21,920 | 21,925    | 5        | 0.0%   | 22,323            | 22,350 | 27   | 0.1%   |
| EB      | 3,462  | 3,463     | 1        | 0.0%   | 3,566             | 3,568  | 2    | 0.1%   |
| Other   | 21,077 | 21,141    | 64       | 0.3%   | 24,365            | 24,725 | 361  | 1.5%   |
| Total   | 46,459 | 46,530    | 70       | 0.2%   | 50,254            | 50,643 | 390  | 0.8%   |

| Table 6.5: Do Minimum Highway | Demand – AM Peak Hour | Trips – OD Format |
|-------------------------------|-----------------------|-------------------|
|-------------------------------|-----------------------|-------------------|

|         |        |                   |      |        | 1      |                   |      |        |  |
|---------|--------|-------------------|------|--------|--------|-------------------|------|--------|--|
|         | 20     | 2017 IP Peak Hour |      |        |        | 2032 IP Peak Hour |      |        |  |
| Purpose | Ref    | DM                | Diff | % Diff | Ref    | DM                | Diff | % Diff |  |
|         |        |                   |      |        |        |                   |      |        |  |
| Work    | 2,716  | 2,717             | 1    | 0.0%   | 2,847  | 2,851             | 4    | 0.1%   |  |
| EB      | 4,704  | 4,704             | 1    | 0.0%   | 4,986  | 4,988             | 3    | 0.1%   |  |
| Other   | 26,800 | 26,884            | 84   | 0.3%   | 31,109 | 31,600            | 491  | 1.6%   |  |
| Total   | 34220  | 34305             | 85   | 0.2%   | 38942  | 39439             | 497  | 1.3%   |  |

#### Table 6.6: Do Minimum Highway Demand – Average IP Hour Trips – OD Format

#### Table 6.7: Do Minimum Highway Demand - PM Peak Hour Trips - OD Format

|         | 2      | 017 PM Pe | eak Hour |        | 2032 PM Peak Hour |        |      |        |
|---------|--------|-----------|----------|--------|-------------------|--------|------|--------|
| Purpose | Ref    | DM        | Diff     | % Diff | Ref               | DM     | Diff | % Diff |
| Work    | 18,574 | 18,578    | 4        | 0.0%   | 18,920            | 18,942 | 22   | 0.1%   |
| EB      | 4,832  | 4,832     | 1        | 0.0%   | 5,072             | 5,074  | 2    | 0.0%   |
| Other   | 27,763 | 27,837    | 74       | 0.3%   | 31,943            | 32,367 | 425  | 1.3%   |
| Total   | 51,169 | 51,248    | 79       | 0.2%   | 55,935            | 56,383 | 448  | 0.8%   |

# 6.5 Do Something Demand Forecasts

6.5.1 Forecasts of HB highway trip demand (24 hour PA format) for the Do Something scenario compared with the reference case scenario are shown in Table 6.8. It must be noted that the 24 hour PA comparison only compares the change in variable trips from Reference to Do Something scenario. From comparison to the Reference scenario, it can be noticed that the relative change in HB trips is very small for all forecast years.

Norwich Northern Distributor Road

Application for Development Consent Order

Document Reference: 5.6

|         |                   | 20              | 17                 |          | 2032              |                 |                    |          |
|---------|-------------------|-----------------|--------------------|----------|-------------------|-----------------|--------------------|----------|
| Purpose | Reference<br>Case | Do<br>Something | Absolute<br>Change | % Change | Reference<br>Case | Do<br>Something | Absolute<br>Change | % Change |
| HBW     | 66,863            | 66,878          | 15                 | 0.0%     | 68,373            | 68,465          | 92                 | 0.1%     |
| HBEB    | 12,229            | 12,233          | 4                  | 0.0%     | 12,856            | 12,869          | 14                 | 0.1%     |
| НВО     | 141,323           | 142,212         | 889                | 0.6%     | 165,782           | 168,700         | 2918               | 1.8%     |

### Table 6.8: Do Something Highway Demand – 24 Hour PA (Variable Trips Only)

6.5.2 Table 6.9 to Table 6.11 show Do Something future year demand trips (both fixed and variable demand in OD format) compared with the reference case, for the respective AM, IP and PM peak hours. From the comparison of these it is evident that there are only very minimal changes in trip numbers across all trip purposes and time periods.

| Table 6.9: Do | Something Highway | Demand – AM | Peak Hour Trip | s – OD Format |
|---------------|-------------------|-------------|----------------|---------------|
|---------------|-------------------|-------------|----------------|---------------|

|         |        | 2017 AM P | eak Hour | •      | 2032 AM Peak Hour |        |      |        |
|---------|--------|-----------|----------|--------|-------------------|--------|------|--------|
| Purpose | Ref    | DS        | Diff     | % Diff | Ref               | DS     | Diff | % Diff |
| Work    | 21,920 | 21,925    | 5        | 0.0%   | 22,323            | 22,354 | 31   | 0.1%   |
| EB      | 3,462  | 3,463     | 1        | 0.0%   | 3,566             | 3,568  | 3    | 0.1%   |
| Other   | 21,077 | 21,216    | 139      | 0.7%   | 24,365            | 24,828 | 463  | 1.9%   |
| Total   | 46,459 | 46,604    | 145      | 0.3%   | 50,254            | 50,750 | 496  | 1.0%   |

#### Table 6.10: Do Something Highway Demand – Average IP Hour Trips - OD Format

|         | 2017 IP Peak Hour |        |      |        | 2032 IP Peak Hour |        |      |        |
|---------|-------------------|--------|------|--------|-------------------|--------|------|--------|
| Purpose | Ref               | DS     | Diff | % Diff | Ref               | DS     | Diff | % Diff |
| Work    | 2,716             | 2,717  | 1    | 0.0%   | 2,847             | 2,851  | 4    | 0.1%   |
| EB      | 4,704             | 4,704  | 1    | 0.0%   | 4,986             | 4,989  | 3    | 0.1%   |
| Other   | 26,800            | 26,958 | 158  | 0.6%   | 31,109            | 31,696 | 587  | 1.9%   |
| Total   | 34220             | 34379  | 159  | 0.5%   | 38942             | 39536  | 594  | 1.5%   |

|         | 2017 PM Peak Hour |        |      | 2032 PM Peak Hour |        |        |      |        |
|---------|-------------------|--------|------|-------------------|--------|--------|------|--------|
| Purpose | Ref               | DS     | Diff | % Diff            | Ref    | DS     | Diff | % Diff |
| Work    | 18,574            | 18,578 | 4    | 0.0%              | 18,920 | 18,945 | 25   | 0.1%   |
| EB      | 4,832             | 4,832  | 1    | 0.0%              | 5,072  | 5,074  | 2    | 0.0%   |
| Other   | 27,763            | 27,940 | 177  | 0.6%              | 31,943 | 32,500 | 558  | 1.7%   |
| Total   | 51,169            | 51,351 | 182  | 0.4%              | 55,935 | 56,519 | 585  | 1.0%   |

Table 6.11: Do Something Highway Demand – PM Peak Hour Trips – OD Format

6.5.3 Table 6.12 to Table 6.14 compares the trip numbers in the Do Something and Do Minimum matrices. It can be seen that the variable demand process makes very little difference to the trip numbers between the two.

|         | 2017 AM Peak Hour |        |      |        | 2032 AM Peak Hour |        |      |        |
|---------|-------------------|--------|------|--------|-------------------|--------|------|--------|
| Purpose | DM                | DS     | Diff | % Diff | DM                | DS     | Diff | % Diff |
| Work    | 21,925            | 21,925 | 0    | 0.0%   | 22,350            | 22,354 | 4    | 0.0%   |
| EB      | 3,463             | 3,463  | 0    | 0.0%   | 3,568             | 3,568  | 0    | 0.0%   |
| Other   | 21,141            | 21,216 | 75   | 0.4%   | 24,725            | 24,828 | 102  | 0.4%   |
| Total   | 46,530            | 46,604 | 75   | 0.2%   | 50,643            | 50,750 | 107  | 0.2%   |

#### Table 6.13: Do Something Compared with Do Minimum Trip Numbers Inter-Peak

|         | 2017 IP Peak Hour |        |      | 2032 IP Peak Hour |        |        |      |        |
|---------|-------------------|--------|------|-------------------|--------|--------|------|--------|
| Purpose | DM                | DS     | Diff | % Diff            | DM     | DS     | Diff | % Diff |
| Work    | 2,717             | 2,717  | 0    | 0.0%              | 2,851  | 2,851  | 0    | 0.0%   |
| EB      | 4,704             | 4,704  | 0    | 0.0%              | 4,988  | 4,989  | 1    | 0.0%   |
| Other   | 26,884            | 26,958 | 74   | 0.3%              | 31,600 | 31,696 | 96   | 0.3%   |
| Total   | 34305             | 34379  | 74   | 0.2%              | 39439  | 39536  | 97   | 0.2%   |

|         | 2017 PM Peak Hour |        |      | 2032 PM Peak Hour |        |        |      |        |
|---------|-------------------|--------|------|-------------------|--------|--------|------|--------|
| Purpose | DM                | DS     | Diff | % Diff            | DM     | DS     | Diff | % Diff |
| Work    | 18,578            | 18,578 | 0    | 0.0%              | 18,942 | 18,945 | 3    | 0.0%   |
| EB      | 4,832             | 4,832  | 0    | 0.0%              | 5,074  | 5,074  | 0    | 0.0%   |
| Other   | 27,837            | 27,940 | 103  | 0.4%              | 32,367 | 32,500 | 133  | 0.4%   |
| Total   | 51,248            | 51,351 | 103  | 0.2%              | 56,383 | 56,519 | 136  | 0.2%   |

### Table 6.14: Do Something Compared with Do Minimum Trip Numbers PM

# 7 Network Performance

# 7.1 Traffic Impact

7.1.1 The forecast traffic flows on the NDR and the surrounding area are shown in Figures I.1 and I.2 in Appendix I. Traffic flows at Wensum Valley section of the network are shown in Figure I.3. Locations in this area have been selected to indicate traffic movements between the A47(T) and the A1067. These show the AADT traffic flows for the different forecast scenarios. The traffic flows for these scenarios for each time period is shown in Tables I.1 to I.5 in Appendix I. The following sections describe key changes in traffic flows at AADT level on the network.

# Strategic traffic movements

- 7.1.2 A number of the model links that carry strategic traffic flows are outside the fully modelled area and as they are outside this area they are not calibrated or validated to observed data. As a result of this the base year flows on these links may not be fully representative of total traffic levels. However, it is considered that the forecast changes in traffic levels on these links as a result of the scheme are still valid.
- 7.1.3 In providing better access to northern Norwich suburbs and the proposed new development locations in the North East Growth Triangle from the proposed new junction with the A47(T) at Postwick, the routes from the east become more attractive via the A47(T) east of Norwich (see Figure I.4 in Appendix I). In 2017 there is an estimated switch of 1100 AADT from the A146 and the A149 to the A12(T)/A47(T) (sites 2 and 4 to site 1). In 2032 the corresponding figure is 2500 AADT. This represents a reduction of 4% (site 2) on the A146 between Beccles and Trowse junction with the A47(T) in 2017 and 7% in 2032, and as a result of these reductions there is a reassignment in the peak hours in 2032 that relieves the B1135/B1527/B1332 route between Dereham and Bungay to the south of the southern bypass which amounts to an AADT reduction 300 (4%) in 2032 (site 5). In addition there are reassignments of traffic north of Great Yarmouth on the A149 route from Caister on Sea resulting in reductions of 300 AADT in 2017 and 1000 AADT in 2032 (4% and 11% respectively) (site 4). The increase in traffic using the A47(T) between Great Yarmouth and Acle (the switching of 1100 AADT in 2017 and 2500 AADT in 2032) represents an increase of 4% in 2017 and 8% in 2032 (site 1). On the A47(T) east of Postwick there is an increase of 3800 AADT in 2017

and 4100 AADT in 2032, representing proportional changes of 11% in both years (site 3).

- 7.1.4 To the east of Norwich the NDR results in orbital traffic reducing on the existing routes between the A47(T) and A1151 Wroxham Road via Church Road / Broad Lane / Green Lane West through Great Plumstead and Woodbastwick Road / B1140 Low Road and Bell Lane through Salhouse. The first route via Great Plumstead experiences reductions of 4100 AADT (66%) in 2017 and 7100 AADT (72%) in 2032 (site 11), and the reductions on the second route via Salhouse are 3000 AADT (70%) in 2017 and 3900 AADT (67%) in 2032 (site 6).
- 7.1.5 To the west of Norwich the NDR results in an increase in traffic using Fakenham Road, with some trips reassigning on this route from the direction of Kings Lynn. The reassignment onto Fakenham Road amounts to an increase of 1900 AADT in 2017 and 2900 in 2032 (18% and 22%) (site 9). There is a consequential reduction on the A47(T) west of Dereham Road junction of 800 AADT in 2017 and 400 AADT in 2032 (3% and 1%), and reductions on routes to the north of Norwich, as explained below (site 8).
- 7.1.6 North of Norwich there are existing routes that experience substantial reductions in traffic with the NDR. To the north west the B1145 route between Bawdeswell / Fakenham Road and Aylsham via Reepham experiences reductions of 400 AADT (10%) in 2017 and 1200 AADT (22%) in 2032 (site 10). The route between Reepham and Hoveton on the A1151 Norwich Road via Buxton Road, Cawston Road and B1354 Coltishall Road carries significant orbital traffic movements in absence of NDR, despite its poor standard. With NDR, traffic on this route reduces by 2900 AADT (60%) in 2017 and 4500 AADT (66%) in 2032 (site 7). Another route that carries orbital traffic around northern Norwich is Spixworth Road / Crostwick Lane via Spixworth. Traffic flows reduce by 2400 AADT (35%) in 2017 and by 4900 AADT (52%) in 2032 (site 12).
- 7.1.7 A graphical representation of traffic flow changes on five selected strategic sites is shown in Figure 7-1. Clearly, the inclusion of the NDR results in a reduction of flows.

### Wider Impacts to the West of Norwich

- 7.1.8 The model runs have been analysed to understand the impact of NDR on traffic levels on routes between the A1067 (Fakenham Road) and the A47(T) (see figure I.3 in Appendix I). The NDR runs between the A1067 west of Taverham and extends to the A47(T) at Postwick junction east of Norwich. Concern has been expressed that because the NDR does not extend to the A47(T) in the west, traffic will increase on routes between the A1067 and the A47(T).
- 7.1.9 To assess this, modelled traffic flows on an imaginary line running between the A1067 and the A47(T) have been investigated. The results are presented in Table 7.1.

| 24 hour two-way flows               | 2012  | 2017<br>DM | 2017<br>DS | 2032<br>DM | 2032<br>DS | NDR<br>change<br>2017 | NDR<br>change<br>2032 |
|-------------------------------------|-------|------------|------------|------------|------------|-----------------------|-----------------------|
| Low Road (A81)                      | 4000  | 4600       | 4000       | 4900       | 4100       | -13%                  | -16%                  |
| Costessey Lane<br>(A89)             | 3300  | 4000       | 3800       | 4800       | 4900       | -5%                   | 2%                    |
| Taverham Lane<br>(A25)              | 5700  | 5700       | 4700       | 6200       | 4700       | -18%                  | -24%                  |
| Ringland Road (A31)                 | 3600  | 4900       | 3500       | 8000       | 6300       | -29%                  | -21%                  |
| C167 Weston<br>Longville (A105)     | 1400  | 1700       | 3300       | 3100       | 5500       | 94%                   | 77%                   |
| C173 Lenwade to<br>Hockering (A106) | 3000  | 3400       | 3500       | 3300       | 3600       | 3%                    | 9%                    |
| Total                               | 21000 | 24300      | 22800      | 30300      | 29100      | -6%                   | -4%                   |

Table 7.1: Modelled Daily Traffic Flows on Routes Between the A1067 and the A47(T)

- 7.1.10 The above shows that the NDR leads to a decrease in daily traffic on the above routes that connect the A1067 with the A47(T) to the west of Norwich of 6% in 2017 and 4% in 2032.
- 7.1.11 Traffic levels on the three key routes between Taverham and Costessey (Costessey Lane, Taverham Lane and Ringland Road) are predicted to reduce significantly, except for Costessey Lane where the predicted reduction is relatively small in 2032 and traffic levels are predicted to increase by 2% in the DS scenario.

- 7.1.12 Low Road provides an alternative route into the west of Norwich that avoids the A1067. Traffic levels are predicted to significantly decrease on this route with the NDR in place.
- 7.1.13 Further out from Norwich however, traffic levels are predicted to increase significantly on the C167 through Weston Longville and slightly on the C173 between Lenwade and Hockering with the NDR in place. Presently the flows on this route are significantly lower than any of the parallel routes compared in Table 7.1 reflecting the character of this route through Weston Longville where it is a single file lane.
- 7.1.14 To address existing HGV problems on routes between the A1067 and the A47(T), a route is presently being upgraded to accommodate such traffic. This route runs from Lenwade and uses the C173 in the north and the C167 Wood Lane in the south. Additional traffic management and / or signage should be used to encourage all traffic onto this improved HGV route to avoid Weston Longville and Hockering in future years; the HGV improvements thereby also being a solution to any increase in traffic on these two routes due to NDR.

### Suburban traffic impacts

| Route / Link Road                                                                                               | 2017 AADT change<br>(DS – DM) | 2032 AADT change<br>(DS – DM) |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|
| Thorpe St Andrew area                                                                                           |                               |                               |  |  |  |  |  |
| Yarmouth Road (West) (Site A65)                                                                                 | -3700 (-13%)                  | -2000 (-6%)                   |  |  |  |  |  |
| Route via Thunder Lane / Woodside<br>Road / Blue Boar Lane between Thorpe<br>St Andrew and Sprowston (Site A20) | -4300 (-33%)                  | -3300 (-28%)                  |  |  |  |  |  |
| A1042 Outer Ring Road (north east<br>quadrant, at A1042 Mousehold Lane)<br>(Site A7)                            | -4000 (-16%)                  | -4000 (-15%)                  |  |  |  |  |  |
| C283 Salhouse Road (Site A45)                                                                                   | -1100 (-8%)                   | -1600 (-10%)                  |  |  |  |  |  |
| A1151 Wroxham Road Site (A43)                                                                                   | -2900 (-15%)                  | -3600 (-16%)                  |  |  |  |  |  |
|                                                                                                                 | Old Catton area               |                               |  |  |  |  |  |
| A1042 Outer Ring Road (Chartwell<br>Road) (Site A26)                                                            | -3700 (-13%)                  | -4700 (-15%)                  |  |  |  |  |  |
| B1150 North Walsham Road (Site A92)                                                                             | -2000 (-18%)                  | -3600 (-27%)                  |  |  |  |  |  |
| St Faiths Road (Site A37)                                                                                       | -2600 (-17%)                  | -3000 (-19%)                  |  |  |  |  |  |
| Hellesdon area                                                                                                  |                               |                               |  |  |  |  |  |
| A140 Boundary Road / Outer Ring Road<br>(Site A5)                                                               | -2100 (-9%)                   | -1500 (-6%)                   |  |  |  |  |  |
| A140 Cromer Road (Site A35)                                                                                     | -3600 (-21%)                  | -3300 (-18%)                  |  |  |  |  |  |

#### Table 7.2: NDR Impact on Suburban Routes and Developer Link Roads
| Route / Link Road                                                                   | 2017 AADT change<br>(DS – DM) | 2032 AADT change<br>(DS – DM) |
|-------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| A1067 Drayton Road (Site A32)                                                       | -1400 (-7%)                   | -2000 (-10%)                  |
| Reepham Road (Site A33)                                                             | 1600 (16%)                    | 700 (7%)                      |
| Middleton's Lane (between Cromer<br>Road and Reepham Road) (site A83)               | -1100 (-11%)                  | -1300 (-11%)                  |
|                                                                                     | Drayton area                  |                               |
| School Road (north of Fakenham Road)<br>(site A21)                                  | -2000 (-18%)                  | -2400 (-19%)                  |
| Fakenham Road (through Taverham)<br>(site A54)                                      | -2600 (-26%)                  | -2600 (-23%)                  |
|                                                                                     | Link Roads                    |                               |
| Beyond Green (between B1150 N<br>Walsham Road and A1151 Wroxham<br>Road) (site A96) | -3500 (-42%)                  | -6100 (-45%)                  |
| White House Farm (between A1151<br>Wroxham Road and Salhouse Road)<br>(site A98)    | 600 (27%)                     | -3600 (-32%)                  |
| Salhouse Road to Plumstead Road<br>(only in place in 2032) (site A100)              | n/a                           | -3400 (-23%)                  |
| Brook Farm / Laurel Farm link road (site A104)                                      | -4000 (-78%)                  | -8700 (-67%)                  |

7.1.15 In the Thorpe St Andrew area (see figure I.2 in Appendix I) traffic is reduced on Yarmouth Road (West) by 3700 AADT (13%) in 2017 and by 2000 AADT (6%) in 2032, refer to Table 7.2 (negative figures indicate reductions with NDR). There is a significant reduction on the north-south suburban route Thunder Lane / Woodside Road / Blue Boar Lane between Thorpe St Andrew and Sprowston of 4300 AADT (33%) in 2017 and 3300 AADT (28%) in 2032. There are significant reductions in traffic on the A1042 Outer Ring Road around the north east quadrant with traffic flows on the A1042 Mousehold Lane reducing by 4000 AADT (16%) in 2017 and 4000 AADT (15%) in 2032. On the radial routes into the city through city's north eastern suburbs in Spowston and Thorpe St Andrew there is a small reduction in forecast traffic on C874 Plumstead Road but larger reductions on C283 Salhouse Road and A1151 Wroxham Road. The Salhouse Road reduction is 1100 AADT (8%) in 2017 and 1600 AADT (10%) in 2032. On Wroxham Road the traffic reduces by 2900 AADT (15%) in 2017 and 3600 AADT (16%) in 2032.

- 7.1.16 In Old Catton the traffic reduces on the A1042 Outer Ring Road (Chartwell Road) by 3700 AADT (13%) in 2017 and 4700 AADT (15%) in 2032. The traffic flows also reduce across the radial routes on B1150 North Walsham Road, C246 Spixworth Road and C251 St Faiths Road. The main reductions are on North Walsham Road of 2000 AADT (18%) in 2017 and 3600 AADT (27%) in 2032, and on St Faiths Road of 2600 AADT (17%) in 2017 and 3000 AADT (19%) in 2032.
- 7.1.17 In Hellesdon (see figure I.1 in Appendix I) the traffic reduces on the A140 Boundary Road Outer Ring Road by 2100 AADT (9%) in 2017 and 1500 AADT (6%) in 2032. On the radial routes traffic is reduced on A140 Cromer Road and A1067 Drayton Road. On the A140 Cromer Road traffic reduces by 3600 AADT (21%) in 2017 and 3300 AADT (18%) in 2032, and on A1067 Drayton Road traffic reduces by 1400 AADT (7%) in 2017 and 2000 AADT (10%) in 2032. However the traffic on Reepham Road increases by 1600 AADT (16%) in 2017 and 700 AADT (7%) in 2032, although on Middleton's Lane between Cromer Road and Reepham Road traffic reduces by 1100 AADT (11%) in 2017 and 1300 AADT (11%) in 2032 (site A83). In Drayton the traffic reduces on the School Road north of A1067 Fakenham Road by 2000 AADT (18%) in 2017 and 2400 AADT (19%) in 2032 (site A21) and on Fakenham Road through Taverham traffic reduces by 2600 AADT (26%) in 2017 and 2600 AADT (23%) in 2032 (site A54).
- 7.1.18 With the implementation of the JCS planned development a number of developer link roads are assumed to be provided as part of the developments. These are designed to act either as urban high streets to serve walking and cycling movement as well as traffic access for the development or as local development distributor roads. In absence of NDR these link roads carry very high traffic flows that is incompatible with their intended purposes, but these traffic flows are relieved substantially by the NDR as shown in Table 7.2.

#### City centre traffic impacts

- 7.1.19 Traffic impacts in the city centre occur due to a combination of impacts resulting from the NDR and complementary traffic management measures in the city centre that would be introduced should the NDR scheme proceed. The traffic management measures effect restrictions to general traffic crossing the city centre and thus displace traffic movements to the Inner Ring Road.
- 7.1.20 These changes are captured at several locations along the inner ring road and radial routes into the city centre as shown in Figure I.5 in Appendix I.

- Document Reference: 5.6
- Carrow Road (site 13) increased by 200 AADT (1%) in 2017 and increased by 2200 AADT (8%) in 2032;
- A147 Chapelfield Road (site 14) increased by 200 AADT (1%) in 2017 and 1100 AADT (4%) in 2032;
- A147 Grapes Hill Road (site 15) reduced by 400 AADT (1%) in 2017 and increased by 3000 AADT (9%) in 2032;
- A147 St Crispins Road (west) (site 16) decreased by 400 AADT (1%) in 2017 and 2200 AADT (6%) in 2032; and
- A147 St Crispins Road (east) (site 17) stays the same in 2017 and increased by 800 AADT (3%) in 2032.

Application for Development Consent Order

Document Reference: 5.6



#### Figure 7-1: Comparison of Traffic Flows on Inappropriate Routes

76

#### 7.2 Traffic Queues

7.2.1 The network queues estimated by SATURN have been examined and presented in Table 7.3. These are produced in the detailed model area where traffic queues are simulated by the model. These comprise transient queuing such as produced by traffic signal cycles and overcapacity queuing. The total queues are shown in Figure 7-2 and Figure 7-3 for the base, DM and DS scenarios for the AM and PM peaks respectively. In the AM peak the queues increase from a base of 2831 PCU.hrs to 3372 PCU.hrs in 2017 DM and 4265 PCU.hrs in 2032 DM. These levels are reduced with the scheme by 13% in 2017 to 2948 PCU.hrs and by 8% in 2032 to 3908 PCU.hrs. Changes in the PM peak are from a base of 2353 PCU.hrs to 3116 PCU.hrs in 2017 DM and 4201 PCU.hrs in 2032 DM. These levels are reduced with the scheme by 7% in 2017 to 2889 PCU.hrs and by 5% in 2032 to 3993 PCU.hrs. It should be noted that the queues are representative of the whole of the city network (the detailed model area) so in this context the Scheme would have a significant effect, especially in the AM peak.

| Scenario  | Tr    | ansient<br>(PCU | queues<br>hrs) | 5   | Over- | capac<br>(PCU | ity que<br>hrs) | ues | Total queues<br>(PCU hrs) |       |       |     |
|-----------|-------|-----------------|----------------|-----|-------|---------------|-----------------|-----|---------------------------|-------|-------|-----|
|           | AM    | IP              | РМ             | OP  | AM    | IP            | РМ              | OP  | AM                        | IP    | РМ    | OP  |
| 2012 Base | 2,165 | 1,248           | 2,062          | 267 | 666   | 35            | 290             | 0   | 2,831                     | 1,283 | 2,353 | 267 |
| 2017 Do   |       |                 |                |     |       |               |                 |     |                           |       |       |     |
| Minimum   | 2,466 | 1,394           | 2,463          | 286 | 906   | 58            | 653             | 0   | 3,372                     | 1,451 | 3,116 | 286 |
| 2017 Do   |       |                 |                |     |       |               |                 |     |                           |       |       |     |
| Something | 2,336 | 1,339           | 2,350          | 282 | 612   | 47            | 539             | 0   | 2,948                     | 1,386 | 2,889 | 282 |
| 2032 Do   |       |                 |                |     |       |               |                 |     |                           |       |       |     |
| Minimum   | 2,910 | 1,739           | 2,904          | 328 | 1,355 | 170           | 1,296           | 0   | 4,265                     | 1,909 | 4,201 | 328 |
| 2032 Do   |       |                 |                |     |       |               |                 |     |                           |       |       |     |
| Something | 2,743 | 1,664           | 2,691          | 321 | 1,165 | 167           | 1,301           | 0   | 3,908                     | 1,832 | 3,993 | 321 |

#### Table 7.3: Queue estimated by SATURN (PCU hrs)

### Norwich Northern Distributor Road Application for Development Consent Order

Document Reference: 5.6



#### Figure 7-2: Overall Queue Comparison - AM peak

### Norwich Northern Distributor Road Application for Development Consent Order

Document Reference: 5.6



#### Figure 7-3: Overall Queue Comparison - PM peak

#### 7.3 Effects on People

7.3.1 The Effects on People are evaluated in Table 7.4 by calculating the number of dwellings within 50 metres of roads with a Volume to Capacity ratio of over 90%. This uses existing address point data, so the analysis does not account for proposed new dwellings. A graph representing this data is shown in Figure 7-4.

#### Table 7.4: Number of Dwellings within 50 metres of roads

|    | 2012 | 2          | 017          | 2032       |              |  |  |
|----|------|------------|--------------|------------|--------------|--|--|
|    | Base | Do Minimum | Do Something | Do Minimum | Do Something |  |  |
| AM | 3922 | 5676       | 4456 (-21%)  | 6824       | 4989 (-27%)  |  |  |
| PM | 2973 | 4432       | 4123 (-7%)   | 5587       | 5163 (-8%)   |  |  |

### Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6



#### Figure 7-4: Effects on People

### 7.4 City Centre through Traffic

- 7.4.1 City centre through traffic has been calculated in Table 7.5 by establishing 3 cordons. These cordons are:
  - Inner Ring Road Inner just inside the Inner Ring Road;
  - Inner Ring Road Outer just outside the Inner Ring Road; and
  - Outer Ring Road Outer just outside the Outer Ring Road.
- 7.4.2 Using these we can show the amount of traffic using the city centre, the inner ring road, and the outer ring road for through trips. One of the aims of the NDR is to decrease the amount of traffic and congestion that in part is due to travel through and across the city. In addition, the complementary city centre traffic management measures will substantially reduce through traffic in the city centre.

#### Table 7.5: City Centre through Traffic (AADT) Image: Comparison of the second seco

|                                 | 2012  | 2          | 017             | 2032       |                 |  |
|---------------------------------|-------|------------|-----------------|------------|-----------------|--|
|                                 | Base  | Do Minimum | Do Something    | Do Minimum | Do Something    |  |
| Inner Ring Road Inner<br>Cordon | 9477  | 8159       | 6787<br>(-17%)  | 9236       | 4726<br>(-49%)  |  |
| Inner Ring Road Outer<br>Cordon | 77825 | 82152      | 78369<br>(-5%)  | 88368      | 80352<br>(-9%)  |  |
| Outer Ring Road Outer<br>Cordon | 68117 | 73691      | 63421<br>(-14%) | 79151      | 66780<br>(-16%) |  |

- 7.4.3 A graphical representation of this is shown in Figure 7-5 to Figure 7-7 which illustrate the reduction of through trips in the Do Something Scenario. Tables showing this information by time period are contained in Appendix J.
- 7.4.4 With the proposed city centre traffic management measures in the Do Something scenario through traffic in the city centre is reduced from the Base level and almost halved in 2032.
- 7.4.5 On the Inner Ring Road cross city traffic that uses the Inner Ring Road reduces with the Scheme by 3783 AADT (5%) in 2017 and by 8016 AADT (9%) in 2032 to levels only just higher than those in the base year.
- 7.4.6 On the Outer Ring Road, cross city traffic is reduced with the scheme by 10270 (14%) in 2017 and by 12371 (16%) in 2032 to levels below those in the base year.

## Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6



#### Figure 7-5: Through Trips crossing Inner Ring Road Inner Cordon

## Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

![](_page_83_Figure_2.jpeg)

#### Figure 7-6: Through Trips crossing Inner Ring Road Outer Cordon

## Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

![](_page_84_Figure_2.jpeg)

#### Figure 7-7: Through Trips crossing Outer Ring Road Outer Cordon

#### 7.5 Highway Journey Times

- 7.5.1 Highway journey times between four locations on strategic routes and three proposed development locations have been compared between scenarios. The locations are shown in Figure 7-8 and stated below:
  - A47(T) West;
  - A11(T) (Thickthorn Roundabout);
  - A47(T) East (Brundall);
  - A1067 Fakenham Road (Attlebridge);
  - Norwich International Airport;
  - Rackheath; and
  - Broadland Gate
- 7.5.2 Figure 7-9 and Figure 7-10 show a comparison of average journey times for the AM peak and PM peak respectively, these are arithmetic means of the journey time for both directions. These Figures show the journey times for the base year and for Do Minimum and Do Something scenarios for the forecast years. The data for these Figures is presented in Table 7.6 and Table 7.7, as well as the percentage changes for the Do Something compared with the Do Minimum scenario.
- 7.5.3 The Figures and Tables show that with the Scheme there would be substantial reductions in journey times between the trunk road network and the Airport and Rackheath, with journey times from the A47(T) East to the Airport reducing by over eight minutes in 2017 and over ten minutes in 2032, or by over one third. In addition the journey times for orbital movements between Fakenham Road, Airport, Rackheath and Broadland Gate reduce by between 30% and 50% in 2017 and by between 29% and 52% in 2032. This data demonstrates that the Scheme would substantially improve access times between the strategic highway network and the planned development locations in the JCS plan and would provide a significant improvement for orbital movements to the north of the City between the proposed major development locations.

#### Figure 7-8: Route Locations

![](_page_86_Figure_3.jpeg)

P:\Norwich\MM Projects\233906 - NDR 2007\233906-DP-01 NDR Transport Assessment\6.0 NDR Update 2012\DCO Plans\Reduced JCS Growth\MMD-233906-DP-0009 (K.1).dwg Dec 10, 2013 - 10:18AM wor44127

Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

Application for Development Consent Order

Document Reference: 5.6

|          |                |                | 2012            |               | 2017          |          | 2032          |               |          |  |
|----------|----------------|----------------|-----------------|---------------|---------------|----------|---------------|---------------|----------|--|
| Route no | Jc             | ourney         | Base<br>(mm:ss) | DM<br>(mm:ss) | DS<br>(mm:ss) | % Change | DM<br>(mm:ss) | DS<br>(mm:ss) | % Change |  |
| 1        | A47(T)W        | Airport        | 22:41           | 24:43         | 19:34         | -21%     | 25:03         | 21:13         | -15%     |  |
| 2        | A11(T)         | Airport        | 22:10           | 23:41         | 22:48         | -4%      | 25:08         | 24:22         | -3%      |  |
| 3        | A47(T)E        | Airport        | 23:37           | 24:37         | 16:00         | -35%     | 27:14         | 16:48         | -38%     |  |
| 4        | Fakenham<br>Rd | Airport        | 15:31           | 15:57         | 11:11         | -30%     | 16:22         | 11:48         | -28%     |  |
| 5        | A47(T)W        | Rackheath      | 22:15           | 23:02         | 19:44         | -14%     | 26:10         | 23:44         | -9%      |  |
| 6        | A11(T)         | Rackheath      | 17:22           | 18:20         | 14:28         | -21%     | 22:25         | 18:52         | -16%     |  |
| 7        | A47(T)E        | Rackheath      | 09:40           | 09:42         | 07:41         | -21%     | 10:08         | 08:31         | -16%     |  |
| 8        | Fakenham<br>Rd | Rackheath      | 26:56           | 28:13         | 13:33         | -52%     | 29:37         | 14:19         | -52%     |  |
| 9        | Airport        | Rackheath      | 16:26           | 17:46         | 11:31         | -35%     | 19:27         | 12:06         | -38%     |  |
| 10       | A47W           | Broadland Gate | 14:30           | 14:31         | 14:21         | -1%      | 16:25         | 16:24         | 0%       |  |
| 11       | A11            | Broadland Gate | 09:37           | 09:48         | 09:42         | -1%      | 12:39         | 13:04         | 3%       |  |
| 12       | A47E           | Broadland Gate | 03:13           | 03:21         | 03:43         | 11%      | 06:20         | 03:46         | -41%     |  |
| 13       | Fakenham<br>Rd | Broadland Gate | 28:40           | 26:02         | 15:28         | -41%     | 29:43         | 16:23         | -45%     |  |
| 14       | Rackheath      | Broadland Gate | 08:22           | 09:30         | 05:06         | -46%     | 10:42         | 05:54         | -45%     |  |
| 15       | Airport        | Broadland Gate | 21:21           | 22:45         | 13:26         | -41%     | 22:29         | 14:10         | -37%     |  |

#### Table 7.6: Average Journey Times - AM Peak

Application for Development Consent Order

Document Reference: 5.6

|          |                |                       | 2012    |         | 2017          | 2032   |         |         |          |
|----------|----------------|-----------------------|---------|---------|---------------|--------|---------|---------|----------|
| Route no | Jc             | ourney                | Base    | DM      | DS<br>(mmuse) | %      | DM      | DS      | % Change |
|          |                | -                     | (mm:ss) | (mm:ss) | (mm:ss)       | Change | (mm:ss) | (mm:ss) | -        |
| 1        | A47(T)W        | Airport               | 21:53   | 23:45   | 19:06         | -20%   | 24:51   | 20:15   | -19%     |
| 2        | A11(T)         | Airport               | 23:11   | 24:17   | 22:51         | -6%    | 25:50   | 25:26   | -2%      |
| 3        | A47(T)E        | Airport               | 22:58   | 24:52   | 17:10         | -31%   | 26:06   | 18:26   | -29%     |
| 4        | Fakenham<br>Rd | Airport               | 16:29   | 16:53   | 12:01         | -29%   | 16:18   | 12:26   | -24%     |
| 5        | A47(T)W        | Rackheath             | 25:07   | 23:42   | 20:43         | -13%   | 27:04   | 21:59   | -19%     |
| 6        | A11(T)         | Rackheath             | 17:56   | 18:35   | 14:36         | -21%   | 22:19   | 19:09   | -14%     |
| 7        | A47(T)E        | Rackheath             | 09:40   | 09:43   | 07:55         | -19%   | 09:59   | 09:04   | -9%      |
| 8        | Fakenham<br>Rd | Rackheath             | 26:49   | 27:28   | 13:38         | -50%   | 29:37   | 14:09   | -52%     |
| 9        | Airport        | Rackheath             | 17:06   | 17:55   | 12:32         | -30%   | 18:02   | 12:36   | -30%     |
| 10       | A47W           | Broadland Gate        | 14:55   | 15:11   | 15:03         | -1%    | 18:20   | 17:24   | -5%      |
| 11       | A11            | Broadland Gate        | 10:11   | 10:04   | 10:00         | -1%    | 13:35   | 12:57   | -5%      |
| 12       | A47E           | Broadland Gate        | 03:17   | 03:22   | 03:32         | 5%     | 05:46   | 04:19   | -25%     |
| 13       | Fakenham<br>Rd | Broadland Gate        | 27:45   | 25:25   | 15:25         | -39%   | 29:26   | 16:44   | -43%     |
| 14       | Rackheath      | <b>Broadland Gate</b> | 08:23   | 09:37   | 05:03         | -47%   | 10:05   | 05:48   | -42%     |
| 15       | Airport        | Broadland Gate        | 21:03   | 23:17   | 15:36         | -33%   | 23:13   | 15:10   | -35%     |

#### Table 7.7: Average Journey Times - PM Peak

Application for Development Consent Order

Document Reference: 5.6

![](_page_89_Figure_4.jpeg)

![](_page_89_Figure_5.jpeg)

90

Application for Development Consent Order

Document Reference: 5.6

![](_page_90_Figure_4.jpeg)

![](_page_90_Figure_5.jpeg)

91

#### 7.6 Journey Times on Public Transport Routes

- 7.6.1 For the 2017 and 2032 AM and the PM peaks, journey times on five public transport routes carrying high patronage levels into the city have been examined and compared between scenarios. These do not account for stopping times for bus services, but serve to show the changes in running times. The five routes are:
  - Fakenham Rd/ Drayton High Rd to Fakenham Rd/Fir Covert Rd Junction;
  - Cromer Road to Holt Rd/ Cromer Road Junction;
  - Wroxham Road to Wroxham Road/ Green Lane W Junction;
  - Plumstead Road to Plumstead Road/ Broad Lane Junction; and
  - Yarmouth Road to Postwick NW Roundabout.
- 7.6.2 Figure K.1 in Appendix K shows the five routes and Figure 7-11 to Figure 7-14 show the graphical representation of journey times for the Do-Minimum and the Do-Something scenarios. Calculated journey time savings are set out in Table 7.8 and Table 7.9 for inbound and outbound directions respectively. In these tables, the journey time variability for each route is shown using the formula in paragraph 3.3.2 in WebTAG Unit 3.5.7.
- 7.6.3 In 2017 AM peak journey times into the city centre reduce with the Scheme by between 5% and 14%, with a journey time reliability improvement of around half of one minute. In the 2017 PM peak the journey times out of the city centre reduce with the Scheme by between 1 % and 13%, with an average journey time reliability improvement of around one quarter of a minute. Journey time changes in 2032 are more affected by the complementary city centre measures. In 2032 AM peak journey times into the city centre change with the scheme by between a 1% increase and an 11% reduction, with the average journey time reliability improvement of 18 seconds. In the 2032 PM peak the journey times for routes out of the city reduce by between 3% and 24%, with an average journey time reliability improvement of around half of one minute.

## Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

![](_page_92_Figure_2.jpeg)

![](_page_92_Figure_3.jpeg)

![](_page_92_Figure_4.jpeg)

![](_page_92_Figure_5.jpeg)

## Norwich Northern Distributor Road Application for Development Consent Order Document Reference: 5.6

![](_page_93_Figure_2.jpeg)

#### Figure 7-13: Outbound Public Transport Journey Times – AM Peak

Figure 7-14: Outbound Public Transport Journey Times - PM Peak

![](_page_93_Figure_5.jpeg)

<sup>94</sup> 

Application for Development Consent Order

Document Reference: 5.6

| Route | Peak | Base            |                 | 2017            |                 |                 |                 | 2032            |                 |                 |                 | JT savings<br>(%) |       | Change in<br>standard<br>deviation of<br>journey time |      |
|-------|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-------|-------------------------------------------------------|------|
|       |      |                 |                 | Do Minimum      |                 | Do Something    |                 | Do Minimum      |                 | Do Something    |                 | 2017              | 2032  | 2017                                                  | 2032 |
|       |      | Time<br>(mm:ss) | Distance<br>(m) |                   |       |                                                       |      |
| 1     | AM   | 19:07           | 9610            | 21:24           | 9610            | 19:28           | 9610            | 22:12           | 9610            | 20:35           | 9610            | 9.0               | 7.3   | -45                                                   | -40  |
|       | PM   | 18:37           | 9610            | 20:54           | 9610            | 19:24           | 9610            | 22:13           | 9610            | 20:42           | 9610            | 7.2               | 6.8   | -35                                                   | -37  |
| 2     | AM   | 18:10           | 6943            | 18:57           | 6943            | 17:56           | 6943            | 19:00           | 6943            | 19:03           | 6943            | 5.4               | -0.3  | -31                                                   | 2    |
|       | PM   | 17:07           | 6943            | 17:56           | 6943            | 16:53           | 6943            | 18:51           | 6943            | 17:30           | 6943            | 5.9               | 7.2   | -30                                                   | -41  |
| 3     | AM   | 14:28           | 6741            | 15:03           | 6742            | 13:49           | 6742            | 17:19           | 6742            | 15:29           | 6742            | 8.2               | 10.6  | -30                                                   | -51  |
|       | PM   | 12:49           | 6741            | 13:58           | 6742            | 13:04           | 6742            | 14:56           | 6742            | 13:22           | 6742            | 6.4               | 10.5  | -21                                                   | -38  |
| 4     | AM   | 13:20           | 5822            | 13:41           | 5836            | 12:46           | 5836            | 14:24           | 5836            | 14:15           | 5836            | 6.7               | 1.0   | -24                                                   | -4   |
| -     | PM   | 11:28           | 5822            | 12:40           | 5836            | 11:23           | 5836            | 13:07           | 5836            | 14:39           | 5836            | 10.1              | -11.7 | -31                                                   | 43   |
| 5     | AM   | 13:51           | 5872            | 13:48           | 5873            | 11:55           | 5878            | 11:32           | 5873            | 11:36           | 5878            | 13.6              | -0.6  | -48                                                   | 1    |
|       | PM   | 11:25           | 5872            | 11:54           | 5873            | 11:24           | 5878            | 11:58           | 5873            | 12:26           | 5878            | 4.2               | -3.9  | -12                                                   | 11   |

Table 7.8: Inbound Public Transport Journey Times and Journey Time Reliability

Application for Development Consent Order

Document Reference: 5.6

| Route | Peak | Base            |                 |                 | 20              | 17              |                 |                 |                 | JT sav<br>(%)   | vings           | Change in<br>standard<br>deviation of<br>journey time |      |      |      |
|-------|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------------------------------------|------|------|------|
|       |      |                 |                 | Do Minin        | num             | Do Some         | ething          | Do Minin        | num             | Do Something    |                 | 2017                                                  | 2032 | 2017 | 2032 |
|       |      | Time<br>(mm:ss) | Distance<br>(m) |                                                       |      |      |      |
| 1     | AM   | 18:19           | 9386            | 19:07           | 9509            | 18:01           | 9386            | 19:48           | 9509            | 18:48           | 9386            | 5.8                                                   | 5.1  | -21  | -19  |
|       | PM   | 17:05           | 9386            | 18:47           | 9509            | 17:50           | 9386            | 19:20           | 9509            | 17:56           | 9386            | 5.1                                                   | 7.2  | -17  | -27  |
| 2     | AM   | 14:52           | 6757            | 15:39           | 6757            | 15:29           | 6757            | 15:53           | 6757            | 15:43           | 6757            | 1.1                                                   | 1.0  | -4   | -4   |
|       | PM   | 14:17           | 6757            | 15:09           | 6757            | 14:57           | 6757            | 15:03           | 6757            | 14:32           | 6757            | 1.3                                                   | 3.4  | -5   | -13  |
| 3     | AM   | 11:15           | 6702            | 11:55           | 6702            | 11:49           | 6702            | 12:36           | 6702            | 12:09           | 6702            | 0.8                                                   | 3.6  | -2   | -10  |
|       | PM   | 11:31           | 6702            | 12:19           | 6702            | 11:59           | 6702            | 13:24           | 6702            | 12:02           | 6702            | 2.7                                                   | 10.2 | -7   | -30  |
| 4     | AM   | 10:37           | 5942            | 10:27           | 5957            | 10:25           | 5957            | 10:27           | 5957            | 10:22           | 5957            | 0.3                                                   | 0.8  | -1   | -2   |
|       | PM   | 11:07           | 5942            | 11:50           | 5957            | 11:16           | 5957            | 12:01           | 5957            | 10:44           | 5957            | 4.8                                                   | 10.7 | -13  | -28  |
| 5     | AM   | 11:01           | 5857            | 11:00           | 5857            | 10:54           | 5853            | 11:32           | 5857            | 10:49           | 5853            | 0.9                                                   | 6.2  | -2   | -16  |
|       | PM   | 11:57           | 5857            | 12:55           | 5857            | 11:18           | 5853            | 14:05           | 5857            | 10:44           | 5853            | 12.5                                                  | 23.8 | -39  | -83  |

Table 7.9: Outbound Public Transport Journey Times and Journey Time Reliability

### Document Reference: 5.6

### 8 Abbreviations

| AADT   | Average Annual Daily Traffic                                                                                                                                          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATC    | Automatic Traffic Count                                                                                                                                               |
| DfT    | Department for Transport                                                                                                                                              |
| DIADEM | Dynamic Integrated Assignment and Demand Modelling - software released by the Department for Transport                                                                |
| DM     | Do Minimum                                                                                                                                                            |
| DMRB   | Design Manual for Roads and Bridges – a Highways Agency publication setting out guidance and good practice for design and appraisal of road schemes                   |
| DS     | Do Something                                                                                                                                                          |
| COBA   | DfT's Cost-Benefit Analysis tool                                                                                                                                      |
| EB     | East Bound or Employer's Business                                                                                                                                     |
| GAP    | Minimum gap (in seconds) accepted by a vehicle which gives way at priority junctions or traffic signals. Also a measure of Wardrop equilibrium assignment convergence |
| GAPR   | As GAP above in relation to junctions but for entry onto roundabouts                                                                                                  |
| GEH    | Statistical tool to measure closeness of model to observed flows                                                                                                      |
| GIS    | Geographic Information System - designed to capture, store, manipulate, analyse, manage, and present all types of geographical data                                   |
| GPS    | Global Positioning System                                                                                                                                             |
| HA     | Highways Agency                                                                                                                                                       |
| HB     | Home-based                                                                                                                                                            |
| HBEB   | Home-based Employers Business                                                                                                                                         |
| НВО    | Home-based Other                                                                                                                                                      |
| HBW    | Home-based Work                                                                                                                                                       |
| HGV    | Heavy Goods Vehicle                                                                                                                                                   |
| JT     | Journey Time                                                                                                                                                          |

### Application for Development Consent Order

Document Reference: 5.6

| LGV   | Light Goods Vehicle                                                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------|
| LMVR  | Local Model Validation Report                                                                                   |
| MCC   | Manual Classified Count (for a link)                                                                            |
| MCTC  | Manual Classified Turning Count                                                                                 |
| ME    | Matrix Estimation                                                                                               |
| NATS  | Norwich Area Transportation Strategy                                                                            |
| NB    | North Bound                                                                                                     |
| NCC   | Norfolk County Council                                                                                          |
| NDC   | Nationwide Data Collection (company specialising in traffic surveys)                                            |
| NDR   | Norwich Northern Distributor Road                                                                               |
| NHB   | Non-home-based                                                                                                  |
| NHBEB | Non-home based Employer's Business                                                                              |
| NHBO  | Non-home –based Other                                                                                           |
| NTEM  | National Trip End Model                                                                                         |
| NTS   | National Travel Survey                                                                                          |
| OD    | Origin Destination                                                                                              |
| OGV   | Other Goods Vehicle                                                                                             |
| OGV1  | A sub-category of OGV. Includes all rigid vehicles over 3.5 tonnes gross vehicle weight with two or three axles |
| OGV2  | A sub-category of OGV. Includes all rigid vehicles with four or more axles and all articulated vehicles         |
| OP    | Off-peak                                                                                                        |
| PA    | Production-Attraction                                                                                           |
| PCU   | Passenger Car Unit                                                                                              |
| PPK   | Pence per Kilometre                                                                                             |
| PPM   | Pence per Minute                                                                                                |

### Application for Development Consent Order

Document Reference: 5.6

| RSI    | Road Side Interview                                                               |
|--------|-----------------------------------------------------------------------------------|
| SATURN | Simulation – Assignment model of Traffic on Urban Road Networks software          |
| SB     | South Bound                                                                       |
| SRN    | Strategic Road Network                                                            |
| TRADS  | Traffic flow Data System – the Highways Agency's database of traffic count data   |
| TRICS  | Trip Rate Information Computer System                                             |
| VISUM  | Transport modelling software used (in this case) for public transport modelling   |
| VOC    | Vehicle Operating Cost                                                            |
| VOT    | Value of Time                                                                     |
| WB     | West Bound                                                                        |
| WebTAG | Web-based Transport Analysis Guidance produced by the Department for<br>Transport |

## 9 Appendices A to G – See Volume 2 of the Forecasting Report

## **10** Appendices H to K – See Volume 3 of the Forecasting Report